

ISSN: 0067-2904

On SAS-Injective Rings

Heba Hadi Chyad, Akeel Ramadan Mehdi*

Mathematical Department/ Educational College/ University of Al-Qadisiyah/ Al-Diwaniya City/ Iraq

Received: 25/4/2023 Accepted: 5/7/2023 Published: xx

Abstract

Let R be a ring. A right R-module M is called SAS-N-injective (where N is any right R-module) if every right R-homomorphism from a semiartinian small right submodule of N into M extends to N. A ring R is called right SAS-injective if R_R is SAS-R-injective module. Right SAS-injective rings are studied in this paper. Many characterizations and properties of this type of rings are obtained.

Keywords: SAS-injective ring, finitely generated module, injective ring, semiartinian module, small submodule.

حول الحلقات الاغمارية من النمط- SAS

هبة هادي جياد, عقيل رمضان مهدي *

قسم الرياضيات, كلية التربية, جامعة القادسية, محافظة الديوانية, العراق

الخلاصة

لتكن R حلقة. المقاس الايمن M على الحلقة R يسمى أغماري من النمط-SAS نسبة الى N (حيث N هو مقاس ايمن على الحلقة R) اذا كل تماثل مقاسي ايمن على الحلقة R من مقاس جزئي ايمن شبه ارتيني صغير من N الى M يوسع الى N. الحلقة R تسمى حلقة اغمارية يمنى من النمط—SAS اذا كان المقاس الايمن R هو مقاس اغماري من النمط—SAS نسبة الى الحلقة R. الحلقات الاغمارية اليمنى من النمط—SAS قد درست في هذا البحث. تم الحصول على العديد من تشخيصات وخصائص هذا النوع من الحلقات.

1. Introduction

Throughout this paper, R is an associative ring with identity 1 and any module is unitary. By a module (resp., homomorphism) we mean a right R-module (resp. right R -homomorphism), if not otherwise specified. The class of right R-modules is denoted by Mod-R. We write J(M) and $\mathrm{soc}(M)$ for the Jacobson radical and the socle of a right R-module M, respectively. We write $Z(R_R)$ for the right singular ideal of a ring R. A module M is called semiartinian, if $\mathrm{soc}(M/K) \neq 0$, for any proper submodule K of M [1]. For a right R-module M_R , we use Sa(M) to denote the sum of all semiartinian submodules of M. A proper submodule R of a module R is called small, if R is a submodule of R implies R is a submodule of R implies R in R in R in R in R in R.

^{*}Email: akeel.mehdi@qu.edu.iq

Injective modules play important role in module theory, and extensively many authors are studied their generalizations (see, for example, [2-6]). If every R-homomorphism from a right ideal of a ring R into R_R can be extended to R_R , then R is called right self-injective ring [7]. Let $N, M \in \text{Mod-}R$, then M is called an SAS-N-injective, if any right R-homomorphism from a semiartinian small right submodule of N into M extends to N. If a module M is an SAS-Rinjective, then M is called an SAS-injective. A ring R is called a right SAS-injective if the right R-module R_R is an SAS-injective [8]. The SAS-injective rings have been studied in this paper. Many characterizations and properties of right SAS-injective rings have been obtained. For examples, we prove that a ring R is a right SAS-injective if and only if for any $N \in Mod$ R and a non-zero R-monomorphsim f from N to R with f(N) a semiartinian small right ideal of R, then $Hom_R(R, N) = Rf$. Also, we prove that if R is a right SAS-injective ring, then $l_R(A_1 \cap A_2) = l_R(A_1) + l_R(A_2)$, for every semiartinian small right ideals A_1 and A_2 . Moreover, we show that if Rb is a minimal left ideal of a right SAS-injective ring R, then $J(bR) \cap \operatorname{soc}(bR)$ is zero or simple, for any $b \in R$. Condition under which SAS-injectivity implies injectivity is given. We get that if R is a semiperfect ring, then R is a right SAS-injective ring if and only if any R-homomorphism from a semiartinian right ideal of R into R extends to R. We prove that if R is a right SAS-injective ring, and $a, b \in R$ with $b \in R$ $Sa(R_R) \cap J(R_R)$ and $aR \cong bR$, then $Ra \cong Rb$. Finally, we show that if R is a right SASinjective ring, then the set $\{a \in R \mid r_R(1-sa) = 0 \text{ for all } s \in R\}$ is contained in $D(R_R)$, where $D(R_R) = \{a \in R \mid r_R(a) \cap mR \neq 0 \text{ for each } 0 \neq m \in Sa(R_R) \cap J(R_R)\}.$

2. SAS-Injective Rings

Let $N, M \in \text{Mod-}R$. Then M is called SAS-N-injective, if any right R-homomorphism from a semiartinian small right submodule of N into M extends to N. A right R-module M is called SAS-injective if M is SAS-R-injective. A ring R is called right SAS-injective if the right R-module R_R is SAS-injective [8]. In this section, right SAS-injective rings are studied extensively. Many characterizations and properties of this type of rings are given.

If any submodule N of a module M takes the form MI, for some ideal I of R, then M is called multiplication module [9].

A right *R*-module *M* is called projective if for any right *R*-epimorphism $f: A \to B$ and for any right *R*-homomorphism $h: M \to B$, there is a $g \in Hom_R(M, A)$ such that hg = f[1, p. 117].

We begin this section with the following theorem, which gives some characterizations of right SAS-injective rings.

Theorem 2.1. Consider the following statements for a ring *R*:

- (1) R is a right SAS-injective ring.
- (2)If P and D are finitely generated projective right R-modules with K is a semiartinian small submodule of P, then any R-homomorphism $f:K \to D$ can be extended to an R-homomorphism $g:P \to D$.
- (3)If $N \in \text{Mod-}R$ and f is a nonzero R-monomorphsim from N to R with f(N) is a semiartinian small right ideal of R, then $Hom_R(N,R) = Rf$.
- Then $(2) \Rightarrow (1)$ and $(1) \Leftrightarrow (3)$. Moreover, if a module R_R^m is multiplication for any $m \in \mathbb{Z}^+$, then $(1) \Rightarrow (2)$.

Proof. (2) \Rightarrow (1) Clear.

(1) \Rightarrow (2) Let R be a right SAS-injective ring with R_R^m a multiplication module, for every $m \in \mathbb{Z}^+$. Let P and D be finitely generated projective modules and K a semiartinian small submodule of P. Let $f: K \to D$ be any R-homomorphism. Since D is finitely generated, there exists a right R-epimorphism $\alpha_1: \mathbb{R}^n \to D$ for some $n \in \mathbb{Z}^+$. Projectivity of D implies that there is a right R-homomorphism $\alpha_2: D \to \mathbb{R}^n$ with $\alpha_1 \alpha_2 = I_D$, where $I_D: D \to D$ is the identity homomorphism. Thus from right SAS-injectivity of ring R and [8] we get that R^n is a right SAS- R^m -injective R-module, for any $m \in \mathbb{Z}^+$. Since P is finitely generated projective, P is a direct summand of \mathbb{R}^k , for some $k \in \mathbb{Z}^+$. By [8], \mathbb{R}^n is SAS-P-injective. Then $hi = \mathbb{R}^n$ $\alpha_2 f$, for some $h \in Hom_R(P, R^n)$. Put $g = \alpha_1 h$: $P \to D$. Then $gi = (\alpha_1 h)i = \alpha_1 (hi) =$ $\alpha_1(\alpha_2 f) = (\alpha_1 \alpha_2) f = I_D f = f$. Therefore, gi = f for some R-homomorphism $g: P \to D$. $(1) \Rightarrow (3)$ Let R be a right SAS-injective ring. Let N be any right R-module and $f: N \rightarrow R$ be a nonzero R-monomorphism with f(N) is a semiartinian small right ideal of R. Define $f: N \to f(N)$ by f(x) = f(x), for any $x \in N$. It is clear that f is an isomorphism. Let $g \in A$ $Hom_R(N,R)$, then we get $gf^{-1}: f(N) \to R$ is an R-homomorphism. Since R is a right SASinjective ring (by hypothesis) and f(N) is a semiartinian small right ideal of R, there is $c \in R$ with $(gf^{-1})(k) = ck$, for all $k \in f(N)$ (by [8, Proposition 2.7]). Let $x \in N$, then $f(x) \in$ f(N) and hence $(gf^{-1})(f(x)) = cf(x)$. Since $(gf^{-1})(f(x)) = g(x)$, it follows that g(x) =cf(x), for any $x \in N$. Thus $Hom_R(N,R) = Rf$. $(3) \Rightarrow (1)$ Let K be a semiartinian small right ideal of $R, f: K \rightarrow R$ a right R-homomorphism, and $i: K \to R$ the inclusion map. Then by hypothesis, we have

Theorem 2.2. Let R be a right SAS-injective ring. Then the following statements hold:

 $Hom_R(K,R) = Ri$ and hence f = ci for some $c \in R$. Thus there exists $c \in R$ such that

- (1) $l_R r_R(m) = Rm$, for all $m \in Sa(R_R) \cap J(R_R)$.
- (2) If $r_R(m) \subseteq r_R(n)$, where $m \in Sa(R_R) \cap J(R_R)$ and $n \in R$, then $Rn \subseteq Rm$.

f(a) = ca for all $a \in K$. Then R is a right SAS-injective ring, by [8]. \Box

- (3) $l_R(mR \cap r_R(a)) = l_R(m) + Ra$, for all $m, a \in R$ with $am \in Sa(R_R) \cap J(R_R)$.
- (4) If $f: aR \to R$, $a \in Sa(R_R) \cap J(R_R)$, is a right R-homomorphism, then $f(a) \in Ra$.
- **Proof.** (1) Let $m \in Sa(R_R) \cap J(R_R)$ and $\in l_R r_R(m)$. By [10, Proposition 2.15, p. 37], $r_R(m) = r_R l_R r_R(m) \subseteq r_R(n)$. Let $f: mR \to R$ is given by f(mr) = nr for any $r \in R$. Then f is a well-defined right R-homomorphism. By hypothesis, there is an endomorphism g of R with g(x) = f(x), for any $x \in mR$. Therefore, $n = n \cdot 1 = f(m \cdot 1) = f(m) = g(m) = g(1)m \in Rm$. Hence $l_R r_R(m) \subseteq Rm$. Conversely, let $rm \in Rm$, where $r \in R$. Thus rmk = 0 for all $k \in r_R(m)$ and hence $rm \in l_R r_R(m)$. Therefore, $l_R r_R(m) = Rm$.
- (2) Let $n \in R$ and $m \in Sa(R_R) \cap J(R_R)$ such that $r_R(m) \subseteq r_R(n)$. Thus $n \in l_R r_R(n)$. Since $r_R(m) \subseteq r_R(n)$ (by hypothesis), $l_R r_R(n) \subseteq l_R r_R(m)$ (by [10, Proposition 2.15, p. 37]). So, $\in l_R r_R(m)$. By (1), $n \in Rm$ and this implies that $Rn \subseteq Rm$.
- (3) Let $a, m \in R$ such that $am \in Sa(R_R) \cap J(R_R)$. If $x \in l_R(m) + Ra$, then $x = x_1 + x_2$ such that $x_1m = 0$ and $x_2 = sa$ for some $s \in R$. For all $b \in mR \cap r_R(a)$, we have b = mr and ab = 0 for some $r \in R$. Since $x_1b = x_1(mr) = (x_1m)r = 0$ and $x_2b = (sa)b = s(ab) = 0$, it follows that $x \in l_R(mR \cap r_R(a))$ and this implies that $l_R(m) + Ra \subseteq l_R(mR \cap r_R(a))$. Let $y \in l_R(mR \cap r_R(a))$. If $r \in r_R(am)$, then (am)r = 0 and hence a(mr) = 0. Thus $mr \in mR \cap r_R(a)$ and hence (ym)r = y(mr) = 0 and so $ym \in l_R(r_R(am))$. Thus $r_Rl_R(r_R(am)) \subseteq r_R(ym)$. By [10, Proposition 2.15, p. 37], $r_R(am) \subseteq r_R(ym)$. By hypothesis, $am \in Sa(R_R) \cap J(R_R)$. By (2), $Rym \subseteq Ram$. Thus ym = sam, for

some $s \in R$ and hence (y - sa)m = 0 and this implies that $y - sa \in l_R(m)$. Thus $y \in l_R(m) + Ra$ and hence $l_R(mR \cap r_R(a)) = l_R(m) + Ra$.

(4) Let $a \in Sa(R_R) \cap J(R_R)$ and let $f: aR \to R$ be a right *R*-homomorphism. Put d = f(a), then $r_R(a) \subseteq r_R(d)$. By (2), $Rd \subseteq Ra$ and hence $f(a) \in Ra$. \square

Proposition 2.3. If R is a right SAS-injective ring, then $l_R(A_1 \cap A_2) = l_R(A_1) + l_R(A_2)$, for any semiartinian small right ideals A_1 and A_2 of R.

Proof. Let A_1 and A_2 be any two semiartinian small right ideals of R. Let $r \in l_R(A_1 \cap A_2)$, thus $r.(A_1 \cap A_2) = 0$. Consider the mapping $f: A_1 + A_2 \rightarrow R$ is given by $f(a_1 + a_2) =$ $r. a_1$, for all $a_1 \in A_1$, $a_2 \in A_2$. Thus f is a well-defined right R-homomorphism, since if $a_1 + a_2 = b_1 + b_2$, where $a_1, b_1 \in A_1$, $a_2, b_2 \in A_2$, then $a_1 - b_1 = b_2 - a_2 \in A_1 \cap A_2$. Since $r(A_1 \cap A_2) = 0$, we have that $r(a_1 - b_1) = 0$ and hence $ra_1 = rb_1$, so $f(a_1 + a_2) = f(b_1 + b_2)$ and this implies that f is a well-defined. Also, for every $a_1 + a_2$, $a_1, b_1 \in A_1, \ a_2, b_2 \in A_2$ $b_1 + b_2 \in A_1 + A_2$, where and $t \in R$, $f((a_1 + a_2) + (b_1 + b_2)) = f((a_1 + b_1) + (a_2 + b_2)) = r(a_1 + b_1) = ra_1 + rb_1 = ra_1 + rb_2$ $f((a_1 + a_2)t) = f(a_1t + a_2t) = r(a_1t) = (ra_1)t =$ $f((a_1+b_1)+(a_2+b_2))$ and $(f(a_1 + a_2))t$. Thus, f is a well-defined right R-homomorphism. Since $A_1 + A_2$ is a semiartinian small right ideal of R_R , we get from SAS-injectivity of R_R that there is a right R-homomorphism $g: R \to R$ such that $g(a_1 + a_2) = f(a_1 + a_2)$, for all $a_1 \in A_1$, $a_2 \in A_2$. Thus $g(a_1 + a_2) = ra_1$, so $ra_1 - g(a_1) = g(a_2) = g(0 + a_2) = r.0 = 0$ and hence $(r-g(1))a_1 = 0$, for all $a_1 \in A_1$. So $r-g(1) \in l_R(A_1)$. Since $g(1) \in l_R(A_2)$ (because $g(1)A_2 = g(A_2) = 0$), we have that $r \in l_R(A_1) + l_R(A_2)$ and hence $l_R(A_1 \cap A_2) \subseteq$ $l_R(A_1) + l_R(A_2)$. From [10, Proposition 2.16, p. 38], the other inclusion is obtained . \Box

A submodule *N* of a right *R*-module *M* is called essential in *M*, denoted by $N \subseteq^{ess} M$, if for every submodule *K* of *M* with $N \cap K = 0$, then K = 0 [1, p. 106].

Proposition 2.4. If R is a right SAS-injective ring, then $Sa(R_R) \cap J(R_R) \subseteq Z(R_R)$.

Proof. Let $a \in Sa(R_R) \cap J(R_R)$ and $mR \cap r_R(a) = 0$ for any $m \in R$. Thus from Theorem 2.2(3), we have that $l_R(m) + Ra = l_R(mR \cap r_R(a)) = l_R(0) = R$. Since $a \in Sa(R_R) \cap J(R_R)$, we have from [1, Corollary 9.1.3, p.214] that $l_R(m) = R$ and hence m = 0. So, $r_R(a) \subseteq e^{ss} R$ and hence $a \in Z(R_R)$. Therefore, $Sa(R_R) \cap J(R_R) \subseteq Z(R_R)$. \square

A ring R is called reduced if R has no non-zero nilpotent elements [7, p.249], where an element $a \in R$ is called nilpotent if $a^n = 0$ for some $n \in \mathbb{Z}^+$.

Corollary 2.5. If R is an SAS-injective reduced ring, then every right R-module is SAS-injective.

Proof. Let R be an SAS-injective reduced ring. By [7, Lemma 7.8, p. 249], $Z(R_R) = 0$. By Proposition 2.4, $Sa(R_R) \cap J(R_R) \subseteq Z(R_R)$ and hence $Sa(R_R) \cap J(R_R) = 0$. By [8], every right R-module is an SAS-injective. \square

If for each sequence $a_1, a_2, a_3, ...$ of elements of a subset K of a ring R, we have $a_n ... a_2 a_1 = 0$, for some $n \in \mathbb{N}$, then K is called a right t-nilpotent [11, p.239].

Proposition 2.6. Let R be a right SAS-injective ring. If the ascending chain $r_R(a_1) \subseteq r_R(a_2a_1) \subseteq \cdots \subseteq r_R(a_n \dots a_2a_1) \subseteq \cdots$ terminates for any sequence a_1, a_2, \dots in $Sa(R_R) \cap Z(R_R)$, then $Sa(R_R) \cap Z(R_R)$ is a right t-nilpotent and $Sa(R_R) \cap J(R_R) = Sa(R_R) \cap Z(R_R)$.

Proof. Let a_1, a_2, \ldots be any sequence in $Sa(R_R) \cap Z(R_R)$, then we have $r_R(a_1) \subseteq r_R(a_2a_1) \subseteq \cdots$. By hypothesis, there exists $m \in \mathbb{N}$ such that $r_R(a_m \ldots a_2a_1) = r_R(a_{m+1}a_m \ldots a_2a_1)$. Assume that $a_m \ldots a_2a_1 \neq 0$. Since $r_R(a_{m+1}) \subseteq^{ess} R_R$, then $(a_m \ldots a_2a_1)R \cap r_R(a_{m+1}) \neq 0$ and hence $0 \neq a_m \ldots a_2a_1r \in r_R(a_{m+1})$ for some $r \in R$. Then $a_{m+1}a_m \ldots a_2a_1r = 0$ and this means that $a_m \ldots a_2a_1r = 0$ and this is a contradiction. Hence $Sa(R_R) \cap Z(R_R)$ is a right t-nilpotent and so $Sa(R_R) \cap Z(R_R) \subseteq J(R_R)$. Since $Sa(R_R) \cap J(R_R) \subseteq Z(R_R)$ (by Proposition 2.4), we have $Sa(R_R) \cap J(R_R) = Sa(R_R) \cap Z(R_R)$.

Proposition 2.7. If R is a right SAS-injective ring, then $soc(bR) \cap J(bR)$ is zero or simple for any $b \in R$ with Rb is a minimal left ideal of R.

Proof. Let $b \in R$ and suppose that $soc(bR) \cap J(bR)$ is non-zero. Assume that $soc(bR) \cap J(bR)$ is not simple. Thus there exist simple submodules x_1R and x_2R of J(bR) with $x_i \in bR$ (i = 1,2). Thus $x_1R \cap x_2R = 0$. By Proposition 2.3, $l_R(x_1) + l_R(x_2) = R$. Since $x_i \in bR$, it follows that $x_i = br_i$ for some $r_i \in R$, i = 1,2 that is $l_R(b) \subseteq l_R(br_i) = l_R(x_i)$, i = 1,2. Since Rb is minimal, $l_R(b)$ is a maximal left ideal in R, that is $l_R(x_1) = l_R(x_2) = l_R(b)$ (because $l_R(x_i) \subseteq R$). Therefore, $l_R(b) = R$ and hence b = 0 and this a contradiction with minimality of Rb. Hence $soc(bR) \cap J(bR)$ is a simple right ideal of R.

Proposition 2.8. Let R be a right SAS-injective ring with $Sa(R_R) \cap J(R)$ is a semisimple right ideal of R. Then $r_R l_R(Sa(R_R) \cap J(R_R)) = Sa(R_R) \cap J(R)$ if and only if $r_R l_R(N) = N$ for every semiartinian small right ideal N of R.

Proof. (\Rightarrow) Assume that $r_R l_R(Sa(R_R) \cap J(R_R)) = Sa(R_R) \cap J(R_R)$ and let N be a semiartinian small right ideal of R. We obtain $N \subseteq r_R l_R(N)$ (by [10, Proposition 2.15 (2), p. 37]). We will prove that $N \subseteq^{ess} r_R l_R(N)$. If $N \cap xR = 0$ for some $x \in r_R l_R(N)$, then by Proposition 2.3, $l_R(N \cap xR) = l_R(N) + l_R(xR) = R$, since $x \in r_R l_R(N) \subseteq r_R l_R(Sa(R_R) \cap J(R_R)) = Sa(R_R) \cap J(R_R)$. If $y \in l_R(N)$, then yx = 0, and hence y(xr) = 0, for all $r \in R$ and so $l_R(N) \subseteq l_R(xR)$. Thus $l_R(xR) = R$ and hence x = 0 and this means $N \subseteq^{ess} r_R l_R(N)$. Since $r_R l_R(N) \subseteq r_R l_R(Sa(R_R) \cap J(R)) = Sa(R_R) \cap J(R_R)$ and $Sa(R_R) \cap J(R_R)$ is semisimple (by hypothesis), we have that $r_R l_R(N)$ is semisimple and hence $N = r_R l_R(N)$. (\Leftarrow) Suppose that $N = r_R l_R(N)$ for all semiartinian small right ideal N of R. Since $Sa(R_R) \cap J(R_R)$ is a semiartinian small right ideal of R, $r_R l_R(Sa(R_R) \cap J(R_R)) = Sa(R_R) \cap J(R_R)$ (by hypothesis). \square

Remark 2.9. If R is a right SAS-injective ring, then it is not necessary that $J(R_R) \subseteq Sa(R_R)$, for example, let R be the localization ring of $\mathbb Z$ at the prime p, that is $R = \mathbb Z_{(p)} = \{\frac{m}{n}: p \text{ does not divide } n\}$. By [8], we have $Sa(R_R) = 0$ and R is a right SAS-injective ring, but $J(R_R) \neq 0$ and hence $J(R_R) \nsubseteq Sa(R_R)$.

If every R-homomorphism from a small right ideal of R into a module M can be extended to R_R , then M is called small injective [4].

Proposition 2.10. If a ring R is right SAS-injective with $J(R_R) \subseteq Sa(R_R)$, then R_R is a small injective module.

Proof. Let R be an SAS-injective ring with $J(R_R) \subseteq Sa(R_R)$. Thus $Sa(R_R) \cap J(R_R) = J(R_R)$. We will prove that R_R is a small-injective module. Let K be a small right ideal of R and $f: K \to R$ a right R-homomorphism. By [1, Theorem 9.1.1(a), p.213], $J(R_R)$ is the sum of all small right ideals in R and hence $K \subseteq J(R_R)$. Thus $K \subseteq Sa(R_R) \cap J(R_R)$ and hence K is a semiartinian small right ideal in R. By SAS-injectivity of R, the homomorphism f extends to R and hence R_R is a small-injective module. \square

Let W be a right ideal of ring R. If $R_R = K_R \oplus L_R$ with K is a submodule of W and $L \cap W$ is a small right ideal of R, then W is called lies over a summand of R_R [12].

Proposition 2.11. If R is a right SAS-injective ring, then every R-homomorphism from W into R_R can be extended to an endomorphism of R_R , where W is a semiartinian right ideal lies over a summand of R_R .

Proof. Let $f: W \to R$ be a right R-homomorphism. Since W lies over a summand of R_R (by hypothesis), it follows from [12] that there exists an idempotent $e^2 = e \in W$ such that $W = eR \oplus B$ for some right ideal $B \subseteq J(R)$. Since W is semiartinian, B is a semiartinian small right ideal of R. We need to prove that $W = eR \oplus (1 - e)B$. Clearly, eR + (1 - e)Bis direct sum, since if $x \in eR \cap (1-e)B$, then x = er and x = (1-e)b, for some $b \in B$ and hence $b = er + eb \in eR \cap B = 0$. Thus b = 0 and hence x = 0, so $eR \cap (1 - e)B = 0$. Let $x \in W$, then x = a + b, for some $a \in eR$, $b \in B$, we can write x = a + eb + (1 - e)band hence $x \in eR \oplus (1-e)B$. Conversely, let $x \in eR \oplus (1-e)B$. Thus, x = a + (1-e)b, for some $a \in eR$ and $(1-e)b \in (1-e)B$, we get that $x = a + (1-e)b = a - eb + b \in eR$ $eR \oplus B$. Hence $W = eR \oplus (1 - e)B$. It is obvious that (1 - e)B is a semiartinian small right ideal of R. Let $f':(1-e)B \to R$ be a right R-homomorphism defined by f'(x)=f(x), for all $x \in (1 - e)B$. Since R is a right SAS-injective ring, there exists an R-homomorphism $g: R_R \to R_R$ with g((1-e)b) = f'((1-e)b) for all $(1-e)b \in (1-e)B$. Define $\alpha: R_R \to R_R$ by $\alpha(x) = f(ex) + g((1-e)x)$, for each $x \in R$. Then α is a well-defined R-homomorphism. If $x \in W$, then x = a + b where $a \in eR$ and $b \in (1 - e)B$ and hence $\alpha(x) = f(ex) + g((1-e)x) = f(a) + g(b) = f(a) + f(b) = f(a+b) = f(x).$

A ring R is called semiperfect if R/J(R) is semisimple and the idempotents of R/J(R) can be lifted to R [7, p.363].

Corollary 2.12. If R is a semiperfect ring, then R is a right SAS-injective ring if and only if any R-homomorphism from a semiartinian right ideal of R into R extends to R.

Proof. Let R be a semiperfect ring. By [13], every right ideal lies over a summand of R. (\Longrightarrow) Let I be a semiartinian right ideal of a right SAS-injective ring R and $f: I \to R$ a right R-homomorphism. By hypothesis, I lies over a summand of R. By Proposition 2.11, there is an R-homomorphism $g: R \to R$ such that g(a) = f(a), for all $a \in I$. (\leftrightarrows) It is clear. \square

Theorem 2.13. Let R be a right SAS-injective ring, and let $a, b \in R$ with $b \in Sa(R_R) \cap J(R_R)$.

- (1) If bR embeds in aR, then Rb is an image of Ra.
- (2) If aR is an image of bR, then Ra embeds in Rb.
- (3) If $bR \cong aR$, then $Ra \cong Rb$.

Proof. Assume that $f:bR \to aR$ is a right R-homomorphism. Since $b \in Sa(R_R) \cap J(R_R)$ (by hypothesis), it follows from SAS-injectivity of R_R that there is an R-homomorphism $g:R \to aR$

R such that $gi_1 = i_2 f$, where $i_1 : bR \to R$ and $i_2 : aR \to R$ are the inclusion maps. Thus f(b) = g(b) = g(1)b = vb, where v = g(1). Since $f(b) \in aR$, it follows that $vb \in aR$ and hence there is $u \in R$ such that vb = au. Define $\theta : Ra \to Rb$ by $\theta(ra) = (ra)u = r(vb)$, for any $r \in R$. Thus θ is a well-defined left R-homomorphism.

- (1) If f is a right monomorphism, we have $r_R(vb) \subseteq r_R(b)$. By Theorem 2.2.(2), $Rb \subseteq Rvb$. Thus $b = r(vb) = \theta(ra)$ (for some $r \in R$). Hence θ is a left R-epimorphism.
- (2) If f is an epimorphism, then there is $s \in R$ such that f(bs) = a and hence a = f(b)s = vbs. We will prove $\ker(\theta) = 0$. Let $x \in \ker(\theta)$, thus $\theta(x) = 0$. Since $x \in Ra$, we have x = ra, for some $x \in Ra$. Thus $\theta(x) = 0$ and hence $\theta(x) = 0$. So, $\theta(x) = 0$ and hence $\theta(x) = 0$ and hence $\theta(x) = 0$. By [1, Lemma 3.1.8, p.44], $\theta(x) = 0$ is a left $\theta(x) = 0$.
- (3) If f is an isomorphism, then by the proofs of (1) and (2), we have that θ is a left R-isomorphism. \Box

Lemma 2.14. Let R be ring, then $D(R_R) = \{a \in R \mid r_R(a) \cap mR \neq 0 \text{ for each } 0 \neq m \in Sa(R_R) \cap J(R_R)\}$ is a left ideal of R.

Proof. It is obviously that $D(R_R)$ is a non-empty set, since $0 \in D(R_R)$. If $a \in D(R_R)$ and $0 \neq m \in Sa(R_R) \cap J(R_R)$, thus $mb \in r_R(a) \cap mR$, for some $b \in R$ and so a(mb) = 0. Since (-a)(mb) = -(amb) = 0, then $mb \in r_R(-a)$ and hence $r_R(-a) \cap mR \neq 0$. Thus $-a \in D(R_R)$. Now, let $a_1, a_2 \in D(R_R)$ and $0 \neq m \in Sa(R_R) \cap J(R)$. We have that $0 \neq mb \in r_R(a_1) \cap mR$ for some $b \in R$. Since $a_2 \in D(R_R)$, it follows that $-a_2 \in D(R_R)$ and hence $0 \neq mbc \in r_R(-a_2) \cap mR$ for some $c \in R$. Therefore, $0 \neq mbc \in r_R(a_1) \cap r_R(-a_2) \cap mR$. Since $r_R(a_1) \cap r_R(-a_2) = r_R(a_1 + (-a_2)) = r_R(a_1 - a_2)$ (by [10, Proposition 2.16, p. 38]), we have $r_R(a_1 - a_2) \cap mR \neq 0$ for all $0 \neq m \in Sa(R_R) \cap J(R_R)$ and hence $a_1 - a_2 \in D(R_R)$. Also, let $x \in R$ and $a \in D(R_R)$. Since $r_R(a) \subseteq r_R(xa)$, it follows that $r_R(xa) \cap mR \neq 0$ for all $0 \neq m \in Sa(R_R) \cap J(R_R)$ is a left ideal of R.

Proposition 2.15. Let R be a right SAS-injective ring. Then $r_R(a) \subseteq r_R(a - axa)$, for all $a \notin D(R_R)$ and for some $x \in R$.

Proof. For all $a \notin D(R_R)$, we can find $0 \neq m \in Sa(R_R) \cap J(R_R)$ such that $r_R(a) \cap mR = 0$. Clearly, $r_R(am) = r_R(m)$, so Rm = Ram by Theorem 2.2(2). Thus m = xam for some $x \in R$ and this implies that m - xam = 0 and hence (1 - xa)(m) = 0. Thus $a \cdot (1 - xa)(m) = a \cdot 0$ and so (a - axa)m = 0. Therefore, $m \in r_R(a - axa)$, but $m \notin r_R(a)$ because $r_R(a) \cap mR = 0$ and hence the inclusion is strictly. \square

Proposition 2.16. If R is a right SAS-injective ring, then the set $\{a \in R \mid r_R(1-sa) = 0 \text{ for all } s \in R\}$ is contained in $D(R_R)$.

Proof. We will prove that by contradiction. Assume that there is an element $a \in R$ such that $r_R(1-sa)=0$ for all $s \in R$ with $a \notin D(R_R)$. Then there exists $0 \neq m \in Sa(R_R) \cap J(R_R)$ with $r_R(a) \cap mR = 0$. If $r \in r_R(am)$, then (am)r = 0 and hence a(mr) = 0 and so $mr \in r_R(a)$. Since $r_R(a) \cap mR = 0$, it follows that mr = 0 and so $r \in r_R(m)$. Hence $r_R(am) \subseteq r_R(m)$. By Theorem 2.2(2), $Rm \subseteq Ram$. Thus m = sam, for some $s \in R$. Therefore, (1-sa)m = 0 and hence $m \in r_R(1-sa) = 0$ so m = 0 and this is a contradiction. Thus the statement is hold.

3. Conclusions

The SAS-injective rings have been studied in this paper. Let $N, M \in \text{Mod-}R$, then M is called an SAS-N-injective, if any right R-homomorphism from a semiartinian small right submodule of N into M extends to N. If a module M is an SAS-R-injective, then M is called an SAS-injective. A ring R is called a right SAS-injective if the right R-module R_R is an SAS-injective [8]. Many characterizations and properties of right SAS-injective rings have been obtained. For examples, we prove that a ring R is a right SAS-injective if and only if for any $N \in \text{Mod-}R$ and a non-zero R-monomorphism f from N to R with f(N) a semiartinian small right ideal of R, then $Hom_R(R,N) = Rf$. Also, we prove that if R is a right SAS-injective ring, then $l_R(A_1 \cap A_2) = l_R(A_1) + l_R(A_2)$, for every semiartinian small right ideals A_1 and A_2 . Condition under which SAS-injectivity implies injectivity is given. We prove that if R is a semiperfect ring, then R is a right SAS-injective ring if and only if any R-homomorphism from a semiartinian right ideal of R into R extends to R. Finally, we show that if R is a right SAS-injective ring, then the set $\{a \in R \mid r_R(1-sa)=0 \text{ for all } s \in R\}$ is contained in $D(R_R)$, where $D(R_R) = \{a \in R \mid r_R(a) \cap mR \neq 0 \text{ for each } 0 \neq m \in Sa(R_R) \cap J(R_R)\}$.

References

- [1] F. Kasch, Modules and Rings. New York: Academic Press, 1982.
- [2] A. R. Mehdi, "On L-injective modules," *Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki*, vol. 28, no. 2, pp. 176-192, 2018.
- [3] E. A. Naim and A. R. Mehdi, "On gs-pseudo-injective modules," *Journal of Discrete Mathematical Sciences*, vol. 25, no. 5, pp. 1535-1545, 2022 [Online]. Available: https://doi.org/10.1080/09720529.2022.2082724
- [4] L. Shen and J. Chen, "New characterizations of quasi-Frobenius rings," *Comm. Algebra*, vol. 34, pp. 2157-2165, 2006 [Online]. Available: https://doi.org/10.1080/00927870600549667
- [5] M. A. Ahmed, M. R. Abbas and N. R. Adeeb, "Almost semi-extending modules," *Iraqi Journal of Science*, vol. 63, no. 7, pp. 3111-3119, 2022 [Online]. Available: https://doi.org/10.24996/ijs.2022.63.7.32
- [6] S. M.Yaseen and M. M. Tawfeek, "Supplement extending modules," *Iraqi Journal of Science*, vol. 56, no.3B, pp. 2341-2345, 2015.
- [7] T.Y. Lam, Lectures on Modules and Rings. New York: Springer-Verlag, 1999.
- [8] H. H. Chyad and A. R. Mehdi, "SAS-injective modules," *Journal of Al-Qadisiyah for Computer Science and Mathematics*, vol. 15, no. 2, 2023, to appear.
- [9] A. A. Tuganbaev, "Multiplication Modules," *J. Mathematical sciences*, vol. 123, pp. 3839-3905, 2004 [Online]. Available: https://doi.org/10.1023/B:JOTH.0000036653.76231.05
- [10] F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules. Berlin-New York: Springer-Verlag*, 1992.
- [11] P. E. Bland, Rings and Their Modules. Berlin: Walter de Gruyter & Co., 2011.
- [12] W. K. Nicholson, "Semiregular modules and rings," *Canadian J. Math.*, vol. 28, pp. 1105-1120, 1976 [Online]. Available: https://doi.org/10.4153/CJM-1976-109-2
- [13] W. K. Nicholson and M. F. Yousif, "Continuous rings with chain conditions," *J of pure and applied algebra*, vol.97, no. 3, pp. 325-332, 1994 [Online]. Available: https://doi.org/10.1016/0022-4049(94)00017-4