Kadhim and Shyaa

Iraqi Journal of Science, 2024, Vol. 65, No. 8, pp: 4513-4519 DOI: 10.24996/ijs.2024.65.8.31

ISSN: 0067-2904

Endo -Approximately 2-Absorbing Submodule and Module

Safa Hussam Kadhim, Farhan Dakhil Shyaa*

Department of Mathematics, College of Education, University of Al-Qadsiyah

Received: 25/4/2023 Accepted: 15/7/2023 Published: 30/8/2024

Abstract:

In this paper we introduce the concept of *Endo*-approximately 2-absorbing submodule (shortly EATA) as a generalization of *Endo* 2-absorbing sub-module , where A proper sub-module N of an R-module M is called an EATA sub-module if for all f, g \in EndM, $x \in M$, $f \circ g(x) \in N$ implies the $f^2(x) \in N$ or $g^2(x) \in N$ or $f^2 \circ g^2$ (M) $\subseteq N$. Many basic properties, characterization and examples of this concept are given.

Keywords: 2-absorbing sub-module, approximately 2-absorbing sub- module, prime sub -module, *Endo* 2-absorbing sub-module.

المقاسات والمقاسات الجزئية المستحوذة تقريبا على 2 من النمط Endo

صفا حسام كاظم ، فرحان داخل شياع[•] قسم الرياضيات, كلية التربية, جامعة القادسية

الخلاصة:

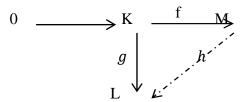
في هذا البحث قدمنا المقاسات الجزئية المستحوذة تقريبا على 2 من النمط Endoو المقاسات المستحوذة تقريبا على 2 من النمط Endo العديد من الخواص الأساسية والوصف والامثلة أعطيت لهذا المفهوم.

1. Introduction

Let M be an R-module over a commutative ring R. Prime sub- modules play vital part in module theory over combative ring. A prime sub-module N of M is a proper sub- module if a \in R, $x \in M$, and $ax \in N$, then $x \in N$ or $a \in (N: M)[1]$. A proper sub- module N of an Rmodule M is called S-prime (*Endo* prime), If for all $f \in S = EndM$, $f(m) \in N$ implies that m $\in N$ or, $f(M) \subseteq N$ [2]. A S-prime module and quasi-Dedekind module are equivalent. An Rmodule M is called a quasi-Dedekind if there exists $f \in EndM$, with $f \neq 0$, then kerf=0 [3]. An R-module M is called a scalar module if $\forall f \in EndM$, there is $r \in R$ such that f(m) = rm, for all $m \in M$ [4]. We say that a module M over an integral domain R is called a torsion module (torsion free) if T(M) = M (T(M) = 0, respectively) where $T(M)= \{m \in M : \exists s r \in R, r\neq 0, rm=0\}$, [5]. Let R be an integral domain a module M is called divisible if, for every $0\neq r\in R$ then r M = M [6]. Also, An R- module M is said to be a multiplication module if for every sub-module N of M there is s an ideal I of R such that N = IM, [7]. Recall that M is said to be fully stable if every sub-module of M is stable, [8]. Suppose that R is a ring and M a right R-module. A sub-module N of M is called fully-invariant if f(N) is contained in N, [9].

*Email: farhan_math1@yahoo.co.uk

An R- module L is called M-injective module if any diagram with exact row: can be extended commutatively by a homomorphism



 $h: M \to L$ that is $h \circ f = g$, [10]. A sub-module N of R-module M is called an RD sub-module, if $rM \cap N = rN$, [11].

A sub-module N is a 2-absorbing sub- module of an R- module M if for any r, $s \in R$, $x \in M$ with $rsx \in N$, and either $rs \in (N: M)$ or, $rx \in N$ or $sx \in N$ [12]. Abdulrahman [13] studied of an *Endo* 2-absorbing sub- module. A proper sub-module N of an R-module M is said to be an *Endo* approximately 2-absorbing sub- module, if for all $f, g \in EndM$, $x \in M$, $f \circ g(x) \in N$ implies that $f(x) \in N$ or $g(x) \in N$ or $f \circ g(M) \subseteq N$.

In this article we study the concept of *Endo*-approximately 2-absorbing sub-modules and module, as a generalization of *Endo* 2-absorbing sub-module, see Remark 2.2. Also, we give another Generalization of an Endo 2-absorbing sub-module, that every *Endo*- approximately 2-absorbing sub-module is approximately 2-absorbing sub-module, but the converse is not true (see Proposition 2.3 and Example 2.4). We clear some relationships between approximately 2-absorbing sub-modules and *Endo*- approximately 2-absorbing sub-modules.

2. EATA sub-module and module.

Definition2.1: A proper sub- module N of an R-module M is named an EATA sub- module if for all f, $g \in EndM$, $m \in M$, $f \circ g(m) \in N$ implies the $f^2(m) \in N$ or $g^2(m) \in N$ or, $f^2 \circ g^2(M) \subseteq N$.

Remark 2.2:

(1) each *Endo* 2- absorbing sub- module is EATA sub-module. But the converse is not correct in general. For instance:

Let M be the Z - module $Z_6 \oplus Z_6$ and N = {(0,0)}.

Let f(x,y)=(0,x), g(x,y)=(2y,x). So, $f \circ g(3,3) = f(6,3)=f(0,3)=(0,0) \in \mathbb{N}$, and $f^2(3,3) = f(0,3)=(0,0) \in \mathbb{N}$ and $g^2(3,3) = g(0,3)=(0,0) \in \mathbb{N}$, but $f(3,3)=(0,3) \notin \mathbb{N}$, $g(3,3)=(0,3) \notin \mathbb{N}$, and $f \circ g(Z_6 \oplus Z_6) = f(2Z_6 \oplus Z_6) = (0, 2Z_6) = (0,2) \notin \mathbb{N}$ so $\{(0,0)\}$ which is not *Endo* 2- absorbing sub-module.

(2) It is obviously that each *Endo*-prime sub-module is an EATA sub- module. We give later an example to show that the converse is not true in general.

Proposition 2.3: Let N be an *Endo* - approximately 2- absorbing sub- module of an R-module M, then N is approximately 2- absorbing sub- module of M.

Proof: Let $abx \in N$ where $a, b \in R, x \in M$.

State $f_1, f_2: M \to M$ such that $f_1(x) = ax$, $f_2(x) = bx$ for all $x \in M$ then $abx = f_1 f_2(x) \in N$. Since N is *Endo* - approximately 2- absorbing, then either $f_1^2(x) = a^2x \in N$ or, $f_2^2(x) = b^2x \in N$ or, $f_1^2 f_2^2(M) = a^2 b^2 M \subseteq N$, so $a^2 x \in N$ or, $b^2 x \in N$ or $a^2 b^2 \in (N:M)$. Thus N is approximately 2- absorbing sub-module of M.

The following example shows that the opposite of Proposition 2.3 may not be true in general.

Example 2.4: Let \mathbb{R} be the field of real number, consider an \mathbb{R} -module is $\mathbb{R}[x]$. Let 0 be the zero polynomial. Thus $N = \{0\}$ is prime and hence it is approximately 2- absorbing, submodule, but it is not Endo- approximately 2- absorbing sub-module. Since there is f_1, f_2 where $f_1, f_2 : \mathbb{R}[x] \to \mathbb{R}[x]$ defined by:

 $\begin{aligned} f_1 & (a_0 + a_1 x + \ldots + a_n x^n) = a_1 x + a_2 x^2 + \cdots a_n x^n. \\ f_2 & (a_0 + a_1 x + \ldots + a_n x^n) = a_0 + a_2 x^2 + \cdots a_n x^n. \end{aligned}$

And let $h(x) = 1+x \in \mathbb{R}[x]$, then $f_1^2(1+x) = x \neq \text{zero polynomial}$, $f_2^2(1+x) = 1 \neq 0$

polynomial. However, $f_1^2 f_2^2 (1+x) = f_1 (1) = 0 = \text{zero polynomial}$ Also, $f_1^2 f_2^2 (\mathbb{R}[x]) \not\subseteq \mathbb{N} = \{0\}$ since $f_1^2 f_2^2 (2+x+3x) = f_1 (2+3x) = 3x \neq 0$ polynomial. So, $f_1^2 (1+x) \notin \mathbb{N}$ and $f_2^2 (1+x) \notin \mathbb{N}$ as well as $f_1^2 f_2^2 (\mathbb{R}[x]) \not\subseteq \mathbb{N}$. Thus \mathbb{N} is not *Endo*approximately 2- absorbing sub-module of M.

The converse of Proposition 2.3 hold in the class of scalar modules.

Proposition 2.5: Let N be a proper sub-module of a scalar R- module M. Then N is approximately 2- absorbing sub-module if and only if N is an Endo- approximately 2absorbing sub-module.

Proof:(\Leftarrow) It is follows by Proposition 2.3.

(⇒) Where $f_1, f_2 \in EndM$, $x \in M$, $f_1f_2(x) \in N$ and M is a scalar module. Then there exists a, b $\in \mathbb{R}$ such that $f_1(x) = ax$, $f_2(x) = bx$ for all $x \in M$, $f_1 f_2(x) = abx \in \mathbb{N}$ which implies that either $a^2x \in \mathbb{N}$ or, $b^2x \in \mathbb{N}$ or $a^2b^2M \subseteq \mathbb{N}$, since \mathbb{N} approximately 2- absorbing sub-module. So, $f_1^2(x) \in N \text{ or, } f_2^2(x) \in N, f_1^2 f_2^2(M) \subseteq N \text{ .Thus } N \text{ is } Endo- \text{ approximately 2- absorbing.}$

Corollary 2.6: If N is a proper sub- module of a finitely generated multiplication R- module M. Then N is an approximately 2- absorbing module if and only if N Endo-approximately 2absorbing sub-module.

proof: Via [8] each finitely generated multiplication R- module M is a scalar module and so by Proposition 2.5, we get the result.

The following example shows that, Endo- approximately 2- absorbing sub- module does not imply *Endo*-prime sub- module in general.

Example 2.7: Take Z_{15} as Z-module. N = ($\overline{0}$) is an approximately 2- absorbing sub- module. Since Z₁₅ is a finitely generated multiplication Z-module, it follows from Corollary 2.6 that N is an *Endo*- approximately 2- absorbing sub-module. Let f(x)=5x for any x in Z_{15} , thus $f(3) \in$ N, but $3 \notin N$ and $f(Z_{15})=5Z_{15} \nsubseteq N$. Hence, N is not *Endo*-prime.

Proposition 2.8: Let R be an integral domain. If M is a divisible torsion non-zero module over R, then M has no Endo- approximately 2- absorbing sub-module.

Proof: Assume that M has an approximately 2- absorbing sub-module say K. Since M is a torsion module. So, an R-module $\frac{M}{K}$ is torsion module. Now, we will prove that $\frac{M}{K}$ is a torsion free R- module. Let $0 \neq m + K \in \frac{M}{K}$ Presume r(m+K) = K for some $r \in R$ if $r \neq 0$, then rm $\in K$ and $m \notin K$. The divisibility of M implies that M = rM, so there is $m_1 \in M$ such that $m=rm_1$. So, $rm=r^2m_1 \in K$. But K is approximately 2-absorbing submodule. Therefore, $r^2m_1 \in K$ or $r^4 \in (K: M)$, if $r^2m_1 \in K$ then $m \in K$ which is a contradiction. If $r^4 \in (K: M)$ then $r^4M \subseteq K$. The divisibility of M implies that $r^4M = M$. Thus M = K which is a contradiction. Hence, r=0 and $\frac{M}{K}$ is torsion and torsion free module that implies $\frac{M}{K} = 0$. So, M = K which is a contradiction. Hence, M has no approximately 2- absorbing sub-module. So, M has no *Endo*-approximately 2- absorbing sub-module.

Proposition 2.9: Let N be a proper sub- module of an R- module M, and K be a fully - invariant sub- module of R- module M such that contained in N. If $\frac{N}{K}$ is an *Endo*-approximately 2- absorbing sub-module of $\frac{M}{K}$. Then N is an *Endo*-approximately 2- absorbing sub-module of M.

Proof: Let f, $h \in EndM$, $m \in M$ such that $f \circ h(m) \in N$. Define $f_1, h_1: \frac{M}{K} \to \frac{M}{K}$ by $f_1(m+K) = f(m)+K$; $h_1(m+K) = h(m)+K$, for all $m \in M$. Clearly, f_1, h_1 are well defined. Now, $f_1 \circ h_1(m+K) = f_1(h_1(m+K)) = (h(m)+K) = (f \circ h)(m)+K \in \frac{N}{K}$. So, $\frac{N}{K}$ is an EATA sub- module of M/K. Then, whichever $h_1^2(m+K) \in \frac{N}{K}$ or $f_1^2 (m+K) \in \frac{N}{K}$ or $f_1^2 (h_1^2(\frac{M}{K})) \subseteq \frac{N}{K}$. So, $h_1^2(m)+K \in \frac{N}{K}$ or $f_1^2 (h_1^2(\frac{M}{K})) \subseteq \frac{N}{K}$. So, $h_1^2(m)+K \in \frac{N}{K}$ or $f_1^2 (h_1^2(\frac{M}{K})) \subseteq \frac{N}{K}$. So, $f^2(h^2(M) \subseteq N$. Thus N is an *Endo*-approximately 2- absorbing sub- module of M. Now we introduce the concept of EATA module:

Definition 2.10: A non-zero R- module M is called EATA module, if (0) is an *Endo*approximately 2-absorbing sub-module of M that is for all f, $g \in EndM$, $(f \circ g)(m) = 0$ impels that $f^2(m) = 0$ or, $g^2(m) = 0$, $(f^2 \circ g^2)(M) = 0$. Now we shall give some properties of EATA modules.

Remarks 2.11:

(1) By Proposition 2.5 and Corollary 2.6, we have M is a scalar or (finitely generated multiplication) R- module. Then M is an approximately 2- absorbing module if and only if M is EATA module.

(2) It is clearly that every *Endo*-prime module (quasi Dedekind) is EATA module. But the converse may not be true. See Example 2.7

(3) M is EATA module if and only if M is approximately 2- absorbing module over E = EndM.

Proposition 2.12: M is an approximately 2- absorbing module if and only if ann_M (f) is approximately 2- absorbing sub- module, for all $f \in EndM$, such that $f(M) \neq 0$

Proof: (\Rightarrow)Let abm $\in ann_{M}$ (f). Then f(abm) = 0. So abf(m) = 0. Since M is approximately 2- absorbing module, then either $a^{2}f(m) = 0$ or $b^{2}f(m) = 0$, $(ab)^{2} \in annM$, so $a^{2}m \in ann_{M}$ (f) or $b^{2}m \in ann_{M}$ (f) or $(ab)^{2}M=(0) \subseteq ann_{M}$ (f). (\Leftarrow) Let abm = 0 whrere a, b $\in \mathbb{R}$, m $\in \mathbb{M}$. Take f= the identity mapping. So, m= i(m). Thus, abi(m) = 0 that is $abm \in ann_{M}$ (i). So $a^{2}m \in ann_{M}$ (i) or $b^{2}m \in ann_{M}$ (i) or $(ab)^{2} \in (ann_{M}$ (i) : M). Thus $i(a^{2}m) = a^{2}m = 0$ or $i(b^{2}m) = b^{2}m = 0$ or $(ab)^{2}M \subseteq ann_{M}$ (i) So, $i(a^{2}m) = a^{2}m = 0$ or, $i(b^{2}m) = b^{2}m = 0$ or $i(ab)^{2}M = (ab)^{2}M = 0$. Hence $i(a^{2}m) = a^{2}m = 0$ or $i(b^{2}m) = b^{2}m = 0$ or $(ab)^{2} \in ann_{M}$. **Lemma** 2.13 : Let M be approximately 2-absorbing R- module. The *annN* is approximately 2-absorbing ideal in *R* for each $0 \neq N \leq M$.

Proof: Since $0 \neq N$, annN < R, because if annN = R, $1 \in annN$ and so N = (0) which is a contradiction. Let $abc \in annN$, for some $a, b, c \in R$. Then ab(cN) = 0. Since (0) is approximately 2- absorbing then $a^2cN = 0$ or $b^2cN = 0$ or $(ab)^2 \in (0, M) = annM \leq annN$. So $a^2c \in annN$ or $b^2c \in annN$ or $(ab)^2 \in annN$. Thus annN is approximately 2- absorbing.

Proposition 2.14: Let M be an EATA module, N sud-module M. Then ℓ -ann_EN is approximately 2- absorbing ideal of E, where E = EndM.

Proof: It follows by Remarks 2.11(3) and Lemma 2.13.

Proposition 2.15: Let $f: M \to M$ be an R-homomorphism If N is fully -invariant EATA sub- module of M such that $f(M) \notin N$. Then $f^{-1}(N)$ is also EATA sub- module of M. Provides EndM is commutative.

Proof: Let h, $g \in EndM$, $m \in M$ s.t $(g \circ h)(m) \in f^{-1}(N)$ then $f(g \circ h) \in N$. Since N is EATA of M.

Then which ever $g^2(f(m)) \in \mathbb{N}$ or $h^2(f(m)) \in \mathbb{N}$ or $g^2 \circ h^2(f(M)) \subseteq \mathbb{N};$

Case(1) if $g^2(f(m)) \in N$, then $fg^2(m) \in N$, thus $g^2(m) \in f^{-1}(N)$.

Case (2) if $h^2(f(m)) \in N$, then $f h^2(m) \in N$ thus $h^2(m) \in f^{-1}(N)$.

Case(3) if $g^2 \circ h^2(f(M) \subseteq N$ then $f(g^2 \circ h^2(M)) \subseteq N$ so $(g^2 \circ h^2(M)) \subseteq f^{-1}(N)$. Thus $f^{-1}(N)$ is an *Endo*-approximately 2-absorbing submodule of M.

Corollary 2.16: Let M be a fully stable, let $f: M \to M$ be an R-homomorphism. If N is EATA, then $f^{-1}(N)$ is an *Endo*-approximately 2- absorbing sub-module of M.

proof: Since M is a fully stable, then *End*M is commutative. Hence, the result by Proposition 2.15.

Proposition 2.17: Let $f: M \to M$ be an R-epimorphism. If N is fully-invariant *Endo*-approximately 2- absorbing sub- module of M and kerf \subseteq N. Then f(N) is EATA sub-module, provided *End*M is commutative.

proof: Let h, $g \in EndM$, m' \in M such that $(g \circ h)(m') \in f(N)$, since f is epimorphism then m' = f(m) for some $m \in M$ so $(g \circ h)f(m) \in f(N)$ we get $f(g \circ h)(m) \in f(N)$ since EndM is commutative. Also, $(g \circ h)(m) \in N$ since kerf $\subseteq N$ and N is Endo-approximately 2- absorbing of M, we have $g^2(m) \in N$ or $h^2(m) \in N$ or $g^2 \circ h^2(M) \subseteq N$;

Case(1) if $g^2(m) \in N$, thus $f(g^2(m)) \in f(N)$, so $g^2f(m) \in f(N)$. Thus, $g^2(m') \in f(N)$.

Case (2) if $h^2(m) \in N$, then $f(h^2(m) \in f(N)$ thus $h^2f(m) \in f(N)$. Since *End*M is commutative thus $h^2(m') \in f(N)$.

Case (3) if $g^2 \circ h^2(M) \subseteq N$, then $f(g^2 \circ h^2(M) \subseteq f(N)$. So, $g^2 \circ h^2(f(M) \subseteq f(N)$ as *EndM* is commutative then $g^2 \circ h^2(M) \subseteq f(N)$ Thus f(N) is an *Endo*- approximately 2- absorbing sub-moduleM.

Proposition 2.18: Let N be an EATA sub- module of an R-module M and A be a submodule of M which is M – injective sub- module. Then either $A \subseteq N$ or $A \cap N$ an EATA submodule of A.

Proof: Presume $A \not\subseteq N$, then $A \cap N \subsetneq A$. Let $f,g \in EndA$, $x \in A$,

 $f \circ g(x) \in A \cap N$. Presume $g^2(x) \notin A \cap N$, then $g^2(x) \notin N$. Now we are trying to prove that $f^2(x) \in A \cap N$ or $f^2 \circ g^2(A) \subseteq A \cap N$.

Since A is M –injective submodule, so there is h, k: $M \rightarrow A$ such that

hoi=f, koi=g where i is the inclusion mapping. Clearly that

where i is the inclusion mapping and h, $k \in EndM$.

But

 $(f \circ g)(x) = [(h \circ i) (k \circ i)](x) = (h \circ i \circ k)(x) = (h \circ i)(k(x) = (h \circ k)(x)) \in N.$

Since N is an EATA sub-module of M $g^2(x) \notin N$, and implies $k^2(x) \notin N$, then either $h^2(x) \in N$ or, $h^2 \circ k^2(M) \subseteq N$. If $h^2(x) \in N$, then $h^2(x) \in A \cap N$ since $h^2(x) \in A$. If $h^2 \circ k^2(M) \subseteq N$ As $f^2 \circ g^2(A) = [(h^2 \circ i) \ (k \circ i)](A) = (h^2 \circ i)(k(A) = (h^2 \circ k^2)(A) \subseteq N$. Also, $f^2 \circ g^2(A) \subseteq A$, $(f \circ g)(A) \subseteq A \cap N$. Thus $A \cap N$ EATA sub-module of A.

Conclusions:

In this work, *Endo*-approximately 2-absorbing sub- module as a generalization of *Endo* 2absorbing sub-module is defined and studied. In addition, some of their properties and characterizations are described. Finally, some examples and significant results are given.

References

- [1] C.P. Lu, "Prime Submodules of Modules," *Commutative Mathematics University Spatula*, vol. 33, pp. 61-69, 1981.
- [2] Sh. O. Dakheel, "S-prime submodules and Some Related Concepts," M.Sc. Thesis, College of science, University of Baghdad, Baghdad, Iraq, 2010.
- [3] A. S. Mijbass, "Quasi-Dedekind Modules," Ph.D. Thesis, University of Baghdad, Baghdad, Iraq, 1997.
- [4] B. N. Shihap, "Scalar Reflexive Modules," Ph. D. Thesis, University of Baghdad, Baghdad, Iraq, 2004.
- [5] T. Kato, "Torsionless modules," *Tohoku Math. J.*, vol. 20, pp.234-243, 1968.
- [6] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, *Extending Modules*. New York: John Wily and Sons, Inc., 1994.
- [7] Z.A. El- Bast, and P.F. Smith, "Multiplication Modules," *Comm. in Algebra*, vol.16, pp. 755-779, 1988.
- [8] M. S. Abbas, "On Fully Stable Modules," Ph.D. Thesis, University of Baghdad, Baghdad, Iraq, 1990.
- [9] A. C. Ozcan, A. Haranc and P. F. Smith, "Duo Modules," *Clasgow Math. J. Trust*, vol. 48, pp. 533-545, 2006.
- [10] D. W. Sharpe and P. Vamos, *Injective Modules*. London: Cambridge University Press, 1972.
- [11] S. E. Atani and F. E. Saraci, "On MacCasland Submodule," *Inter. Mathematical Forum*, vol. 2, no. 64, pp.2255-2260, 2007.
- [12] A. Y. Darani, and F. Soheilnia, "2-Absorbing and Weakly 2-Absorbing submodule," *Thai Journal of Mathematics*, Vol. 9, No. 3, pp. 577-584, 2011.

[13] Abdulrahman Abdullah Harfash "2-Absorbing Submodules(Modules) and Some of Their Generalizations," M.Sc. Thesis, College of Education Ibn A-Haitham, University of Baghdad, Baghdad, Iraq, 2015.