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Abstract  

     Speech separation is crucial for effective speech processing in multi-talker 

conditions, especially in real-time, low-latency applications. In this study, the Time-

Domain Audio Separation Network (TasNet) and Dual-Path Recurrent Neural 

Network were used to perform a time-domain multiple-speaker speech separation 

challenge. One-dimensional conventional recurrent neural networks (RNNs) are not 

capable of accurately simulating long sequences. When their receptive length 

exceeds the sequence field, 1-D CNNs cannot recreate utterance-level sequences. 

Dual-Path Recurrent Neural Network (DPRNN) breaks up the lengthy sequential 

input that progressively performs intra- and inter-chunk operations with input 

lengths proportional to the square root of the beginning sequence length. Model 

outputs are more efficient than earlier systems, improving performance on the Libri 

Mix dataset. Investigations show that the DPRNN, sample-level modeling, and time-

domain audio separation network can replace present methods. EEND-SS and other 

separation algorithms perform worse than DPRNN. The suggested model was able 

to achieve (12.376) SI-SDR, (0.969) STOI (short-time objective intelligibility), 

(12.363) SDR, (9.363) DER, and (97.193) SCA. 
 

Keywords: speech separation, dual path recurrent neural network, long short-term 

memory, Time-Domain audio Separation Network, LibriMix dataset. 

 

 شبكة عصبية متكررة ذات مسار مزدوج باستعمال عزل الكلام والتعرف عليه في الضوضاء المزدحمة 
 

 عمار ابراهيم شهاب  ، * يدر ابراهيمزينب ح

    العراق، بغداد ،  جامعة بغداد ، كلية العلوم، قسم علوم الحاسوب

 

  الخلاصة 
. على الرغم من  تتطلب المعالجة الفعالة للكلام في       البيئات التي تحتوي على متحدثين متعددين فصلاا فعالًا

، لً سيما    ، إلً أنه لً تزال هناك تحدياتلمجالأن مناهج التعلم العميق الحديثة قد أحرزت تقدماا كبيراا في هذا ا 
في الوقت الحالي . الغرض من هذا البحث هو تطبيق نموذج يمكنه أداء مهمة فصل الكلام متعدد المتحدثين  

لشبكة العصبية المتكررة ذات  ( و TasNetشبكة الفصل الصوتي للمجال الزمني )   واستعمال في المجال الزمني  
لً المسار   المتكررة    المزدوج.  العصبية  الشبكات  بواسطة  بدقة  الواسعة  التسلسلات  هذه  مثل  محاكاة  يمكن 

غير قادرة على تكرار متواليات مستوى الكلام عندما يكون  CNNs    شبكة  نأ(. ومع ذلك ، فRNNsالتقليدية ) 
الإدخال التسلسلي الطويل إلى أجزاء أصغر تنفذ    DPRNNمجالها الًستقبالي أصغر من طول التسلسل. يقسم 
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يمكن جعلها متناسبة مع الجذر التربيعي لطول تسلسل البداية.    التي   الإدخالبالتتابع عمليات داخل وبين أجزاء  
يتم الحصول على نتائج نموذجية أكثر فعالية من الأنظمة السابقة ، مما يؤدي إلى أداء أفضل على مجموعة  

باستLibri Mixبيانات   المجال    DPRNN  عمال .  العينة في شبكة فصل الصوت في  والنمذجة على مستوى 
الأساس   خط  مع  بالمقارنة  الحالية.  الأساليب  استبدال  يمكن  أنه  التحقيقات  تُظهر   ،   EEND-SSالزمني 

تحتفظ    ، الأخرى  الفصل  )   DPRNNوخوارزميات  المقترح  نموذجنا  حقق  أفضل.  ديسيبل  0.969بنتائج   )
STOI   ( وكسب  ديسيبل  12.376،   )SI-SDR    وكسب  ،SDR   (12.363  وكسب  ، ديسيبل   )SDR  

 .SCA( ديسيبل 97.193( ديسيبل ، و ) 9.363) 
 

1. Introduction 

    In a context characterized by high levels of ambient noise and activity, individuals are 

capable of selectively attending to the vocalizations of a singular interlocutor while engaging 

in direct communication with said individual. The process requires decoding a mixture of 

auditory stimuli to isolate the desired vocalization [1]. The performance of automatic speech 

recognition (ASR) systems is negatively impacted, as is the intelligibility of communication 

voice. The objective of speech enhancement is to differentiate between clean speech and 

background noise and enhance speech intelligibility and perceived quality. Numerous 

practical applications necessitate the use of source separation, including but not limited to 

singing voice separation and speech de-noising. The process of "voice noise reduction" entails 

the removal of unwanted voices from an audio stream. This has been documented in the 

literature [2], [3]. Following the deployment of a speech recognition system in a noisy 

environment, the recognition task was enhanced by overlapping noisy signals using the 

beamformer framework [4]. 

 

     The process of segregating desired speech from a background of noise is commonly 

referred to as "voice separation." Throughout history, the topic of speech separation has been 

explored primarily from the perspective of signal processing. A contemporary approach 

considers speech separation as a supervised learning task wherein the discerning patterns of 

speech, speakers, and background noise are learned through the utilization of training data. 

Currently, there is ongoing progress in the field of voice separation research. The ability to 

differentiate between various sound sources in daily human interactions poses a challenge for 

machines, particularly when there is only one microphone to capture speech that overlaps. 

The limitations imposed by this constraint highlight the significance of speech separation 

requirements, which necessitate an AI model to receive sufficient inputs with minimal noise, 

distortion, and overlapping speech to effectively process speech signal audio. The text 

illustrates that the task of voice isolation is fundamental to the implementation of speech-

sound signal processing methodologies [5]. Artificial neural networks (ANNs) have 

demonstrated efficacy and utility in time-series applications [6]. 

 

     In comparison to other algorithms, recurrent neural networks (RNNs) provide a deeper 

understanding of the sequence and its meaning when applied to speech, text, financial 

information, audio, and video. It is one of the most effective neural network algorithms 

applied for speech separation, and it can learn features and long-term relationships from serial 

and time-series data [7]. Different from other artificial neural networks in that they process a 

stream of input that informs the final output via feedback loops, these feedback loops allow 

for the preservation of information. "Memory" is a common term for this process [8]. RNNs 

are neural networks that anticipate sequence data by modeling it. Audio, text, and time series 

are all examples of sequence data. RNNs include a looping mechanism that may communicate 

earlier knowledge—this is the hidden state, which reflects information from all previous 

phases. Unlike traditional systems, this allows information to stay in RNNs. RNNs can have 
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feedback mechanisms that are from the hidden layer to the input layer or from the output layer 

to the input layer, allowing them to have trainable memory for time-varying patterns [9]. 

 

     Long-short-term memory (LSTM) is a kind of RNN. RNNs are only capable of 

remembering short-term information, but LSTMs can handle time-series data. Additionally, 

an RNN model suffers from the vanishing gradient problem when dealing with long sequence 

data. However, LSTM may prevent this difficulty during training. An LSTM model may 

recall prior long-term time-series data and provide automatic control for keeping important 

qualities in the cell state while removing unnecessary information [10]. The vanishing or 

exploding gradient problem is resolved by the LSTM, which employs a set of gates to 

regulate when data enters memory [11].  

 

     The DPRNN (Dual Path Recurrent Neural Network) is a significant model that has proven 

successful in organizing deep structures utilizing RNN layers for exceptionally lengthy series. 

According to [12], DPRNN can adjust the input length based on the square root ratio of the 

original length of the sequence. By breaking up the large sequential input into smaller chunks 

and performing intra- and inter-chunk operations regularly, this is possible. 

 

      This paper emphasizes single-channel (or common-channel) voice separation, which is the 

separation of voices from a single noisy wave signal. To simulate lengthy consecutive inputs 

straightforwardly, this study offers a straightforward modified network called DPRNN, which 

assembles any kind of recurrent neural network layer. That is, achieve a higher result than the 

previous studies in noisy and crowded environments by enhancing the Dprnn architecture 

through exchange in the network that proceeds the training and validation phases to do the 

separation task. In this study, the Bi-LSTM is used rather than the Bi-RNN, which is what we 

add as a contribution in addition to using a noisy and crowded signal. This contribution is 

significant, as it can be used to improve the quality of speech recordings in noisy 

environments. This finding has the potential to lead to the development of new technologies 

for improving the quality of communication in noisy environments. 

 

     The remainder of the paper is structured as follows: The literature review of previous work 

is presented in Section 2. The DPRNN architecture for speech separation, the specific 

experiment sets, and the outcomes are all covered in Section 3 of this study. Section 4 serves 

as the paper's discussion, Section 5 is for the conclusion, and Section 6 is for the references. 

 

2. Literature Review 

     In the field of voice separation, data-driven, deep-learning techniques are the most popular 

ones [13]. The convolutional time-domain audio separation network (Conv-Tanset) models 

were the focus of some earlier techniques [14], while others [15] and [16] employed RNN 

architectures. In certain studies, the Deep Attractor Network was employed [17], [18], [19], 

and [20]. 

 

     In Kavalerov et al. [21], the method for universal sound separation that this paper proposes 

employs a mask-based separation strategy. They generated a dataset consisting of randomly 

mixed sounds. Convolutional long-term neural networks (masked-based networks) and the 

short-time Fourier transform (STFT) were employed for sound separation. The STFT 

transformation was performed with a range of window sizes. The Pro Sound Effects Library 

database was utilized to conduct tests and generate a dataset. The dataset was partitioned into 

three subsets for training, validation, and testing, with proportions of 70%, 20%, and 10%, 

respectively. The findings indicate that the source-to-distortion ratio (SDR) value experienced 
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an improvement of nearly 13 dB in the context of differentiating between speech and non-

speech. 

 

      The Filter and Sum Network (FasNet) was an idea introduced by Luo et al. [22] for the 

purpose of segregating signals. The proposed network is comprised of two distinct segments. 

In the initial phase, the frame-level time-domain beam-forming technique was acquired by 

utilizing a designated reference channel. In the second section, the filters for the remaining 

signal channels were established. The research conducted on the proposed model 

demonstrated a 14.3% reduction in the relative word error rate. (WER). 

 

    Nachmani et al. [23] projected a separation model using chunking and a bi-directional RNN 

model, and a technique for an unspecified number of speakers was developed. To optimize 

the SI-SNR between the separated and real signals, their strategy relied on the detection of C-

separated channels. The RNN layers were constructed using LSTM cells. The output of the 

deep model was subjected to the overlap and add procedure to produce the final separated 

signals. The WSJ0-2mix and WSJ0-3mix datasets, featuring four and five speakers, 

respectively, were used for the trials (under random SNR values between 0 and 5 dB). For 

each LSTM cell, six layers, including 128 neurons, were utilized. Moreover, a 20-ms window 

size was employed with the SIFT method. The results of the trials indicated that the SDR was 

6.92. 

 

     Xiang et al. [24] suggested RNN deep network-based microphone speech separation 

techniques. Together with a multi-scale aggregation design, they deployed a triple-path RNN. 

The addition of such multi-scale blocks enhanced the dual-channel RNN architecture. 

Furthermore, there was a block for the fusion of adaptive features. There was satiation for the 

intra-chunk, inter-chunk, and inter-channel processes. The experiments validated the 

effectiveness of the suggested approach. 

 

     Chen et al. [25] suggested a data-driven underwater acoustic signal separation method. Bi-

LSTM (bi-long short-term memory) deep model features were extracted from the time-

frequency mask. They also proposed a T-F mask-aware bi-LSTM architecture to separate the 

signals. Their algorithms distinguished signals with 40 dB of noise in a hydroacoustic audio 

dataset. According to experiments, their model achieved a 97% preserved signal ratio (PSR) 

ratio. 

 

     Jiang et al. [26] used various transformer architectures to extract the local and global 

dependence characteristics of voice sequence data in their research. A novel approach is 

proposed to enhance the adaptability of the separated model by utilizing a forward adaptive 

unit that incorporates both channel and space correlation, which is called “space adaptive 

modeling.” The speaker enhancement module is built into the back end of the separation 

model. It uses the mutual suppression properties of each source signal to make it easier to 

boost or lower the volume of the voices of different speakers. When tested on the public 

corpus WSJ0-2mix, empirical evidence shows that the proposed separation network, called 

SI-SNRi, does a better job of extracting information than the baseline models. 

 

     Xie et al. [27] developed a framework for multi-channel voice separation that uses a pre-

separation and full neural beam method instead of traditional beam-former techniques like the 

minimum variance not distorted response (MVDR) beam-former. The all-neural beam-

forming unit and the pre-separation unit are the two different modules that make up the 

proposed system. The all-neural beam-forming module uses the pre-separation module to 
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collect pre-separated speech and interference signals. Without requiring the construction of a 

spatial covariance matrix, these signals are then used to calculate frame-level beam-forming 

parameters. The results of the experiment on multi-channel speech separation tests, which 

included subtasks in speaker separation and voice augmentation, show that the proposed 

method is better than several high-end baseline methods. This method also makes it possible 

to create stereophonic sounds that are symmetrical. A maximum SI-SNR value of 14.57 was 

obtained using the PsBf method. 

 

     Ravenscroft et al. [28] investigate the impact of different data sampling strategies on the 

performance of neural network speech separation models. The paper finds that using a fixed 

length for all mixtures can lead to suboptimal performance and that using a dynamic length 

based on the number of speakers can improve performance. 

 

    Zhang et al. [29] propose a new speech separation network that combines recurrent fusion, 

dilated convolution, and channel attention. The network is shown to be efficient and effective, 

and it achieves state-of-the-art results on the WSJ0-2mix dataset. 

 

     Chen et al. [30] propose a new speech separation model that combines convolution and 

external attention. The model is shown to be effective in separating both clean and noisy 

mixtures, and it achieves state-of-the-art results on the CHiME-4 dataset. 

 

     Wang et al. [31] propose a new approach to multi-talker overlapped speech recognition 

and diarization. The approach uses a sidecar speech separation model to separate the mixed 

speech into individual speakers and then uses a single model to perform both recognition and 

diarization. The approach is shown to be effective on the LibriSpeech dataset, and it achieves 

state-of-the-art results on both the recognition and diarization tasks. 

 

    In summary, DPRNN has been shown to achieve state-of-the-art performance on a variety 

of speech separation tasks. It is particularly well-suited for real-time speech separation, as it 

can be implemented efficiently on a GPU. Here are some of the potential applications of 

DPRNN in speech separation: By isolating the targeted speech from the background noise, 

DPRNN can be used to enhance the performance of hearing aids. This can make it easier for 

those with hearing loss to interpret speech in loud settings. Also, it is used in virtual assistants 

by isolating the user's speech from background noise. DPRNN may be used to increase the 

accuracy of virtual assistants. This can make it easier for virtual assistants to grasp requests in 

loud settings. 

 

    By distinguishing participant voices from background noise, DPRNN may be used to 

enhance the quality of teleconferencing conversations. This can make it easier for individuals 

to comprehend one another in loud settings. It is also used in audio recording to improve the 

quality of the recorded audio files. DPRNN is a powerful tool for speech separation, and it is 

likely to have a major impact on a variety of applications in the years to come. It served as the 

basis for signal separation in many earlier studies. Some took place in a loud setting, whereas 

others did not. Several research projects made use of a modest dataset. In some of them, a 

fusion process was applied, while in others, novel designs were suggested. 

 

3. Method: 

     The encoder separator and decoder in Figure 1 can be seen as being utilized in the 

suggested research. Speech overlaps by 50% in the encoder portion of the system. Both the 

encoder and decoder use a wholly linked layer to translate features into waveform output. The 
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separator will then receive the feature representation that the encoder produced. The separator 

performs as a dual-path RNN based on LSTM. This experiment uses two bi-LSTMs and 

introduces a skip link between the outputs of the first stacked LSTM and the output of the 

second stacked LSTM. 

 

     A layer that is fully connected instructs the LSTM output. A SoftMax activation function 

is then used to estimate the mask for each sound source, which is subsequently returned as 

separator output. Each source weight matrix in the decoder is computed by multiplying the 

original mixture weight by the mask. Segmentation, overlap-add, and block processing are the 

three components that make up the architecture of the suggested approach (DPRRN 

TASNET). During the segmentation process, a set of inputs is divided into segments, which 

are then concatenated. Putting the pieces together to create a 3-D tensor follows, and iterative 

local (within-chunk) and global (between-chunk) tensor applications are applied to the 

stacked DPRNN blocks. The output of the last layer is changed into an output in reverse order 

using the overlap-add method, and it is all shown in figure 2, which is similar to [11] but with 

the BI-RNN being replaced with Bi-LSTM in the body of the DPRNN TasNet and using a 

different data set and parameters  like the number of layers, the activation function, and the 

optimizer. 

 

                    
Figure 1: Detailed methodology (proposed model steps) 

 

3.1.1. The segmentation process 

     Stage one of segmentation divides W into sections of K length with P hop size and an 

input that is sequential W 𝑅𝑁∗𝐿 where the feature is N. dimension L, where T is the total 

number of time steps. The initial remaining chunks have no padding to ensure that each 

sample in W is seen and only occurs chunked into K/P, resulting in pieces of size S, 

Ds𝑅𝑁∗𝐾, s = 1,..., S. Next, whole pieces are joined together to create the three-dimensional 

tensor T = [D1... DS]𝑅𝑁∗𝐾∗𝑆. 

 

3.1.2. block processing  

     After that, a DPRNN block stack receives the segmentation output T. A 3-D tensor that is 

input is transformed into a different tensor of the same shape by each block. Denoted as𝑡𝑏 ∈
𝑅𝑁∗𝐾∗𝑆, the input tensor for block b = 1..., B, and T1 = T is given here. The intra- and inter-
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chunk processing is handled by the two sub-modules that are present in each block. The 

additional dimension of 𝑇𝑏, i.e., inside each S block separately, is applied to the intra-chunk 

RNN, which is consistently bi-directional: 

                                               𝑈𝑏 = [𝑓𝑏(Tb [: i]), i = 1. . . S]                                        (1) [11] 

Ht=LSTM(Xt,Ht-1,Ct-1)                                                 (1.1) [32] 

Ct=tanh (Wc *Ht+Uc*Ct-1)                                            (1.2) [33] 

Ht=tanh(Wh*Ht+Uh*Ct)                                                (1.3) [33] 

 

    where 𝑈𝑏 𝜖𝑅 𝐻∗𝐾∗𝑆 is the RNN's output, 𝑓𝐵(.) is the mapping function it defined, and 𝑇𝑏[: 

𝔦]  ∈ R The sequence established by chunk 𝔦  is N*K. Following that, the feature dimension of 

a linear fully-connected (FC) layer is changed in 𝑈𝑏 back to that of 𝑇𝑏. And ht is the hidden 

state at time t , xt is the input at time t , ct is the cell state at time t , LSTM is the LSTM 

function , Wc, Uc, Wh, and Uh are the weight matrices. The first equation (1.1), is the core of 

the bi-LSTM RNN. It takes the input at time t, the previous hidden state ht−1, and the 

previous cell state ct−1, and produces the current hidden state ht. The LSTM function is a 

recursive function that updates the hidden state and cell state based on the input and the 

previous states. The second equation (1.2) updates the cell state at time t. The cell state is a 

memory cell that stores information about the input sequence. The tanh function is a non-

linear function that helps keep the cell state from growing too large or too small. The third 

equation (1.3) updates the hidden state at time t. The hidden state is a representation of the 

input sequence that is used by the LSTM function to make predictions. The tanh function is 

used to keep the hidden state from growing too large or too small. The bi-LSTM RNN works 

by first passing the input sequence through two LSTMs, one that reads the sequence from left 

to right and one that reads the sequence from right to left. The outputs of the two LSTMs are 

then combined to produce the final hidden state. 

𝑈�̂�= [GU𝑏[:𝔦] + m, 𝔦 = 1, S]                                            (2)  [34]                                                                

 

    Where �̂� ∈ 𝑅 𝑁∗𝐾∗𝑆 is the converted feature, G 𝑅 𝑁∗𝐻 and m 𝑅 𝑁∗1 are the FC layer's 

weight and bias, respectively, and 𝑈𝑏[:,:,𝔦] 𝑅 𝐻∗𝐾 represents chunk 𝔦 in 𝑈𝐵. Next, layer 

normalization (LN), which was experimentally determined to be crucial for the model to have 

a decent hypothesis capacity, is applied to �̂�. 

 

LN (𝑈�̂�) = 𝑈�̂� −
𝑈�̂� −(𝑈�̂� )

√𝜎(𝑈�̂�)+𝜖
⨀𝑧 + 𝑟                                 (3) [35] 

 

     where, for the sake of numerical stability, is a small positive number, indicates the 

Hadamard product, and z, r 𝑅𝑁∗1Are the scaling variables. According to its definition, the 3-

D tensor has a mean and a variance of (.) and (), respectively. 

 

µ (𝑈�̂�) = 
1

𝑁𝐾𝑆
∑ ∑ ∑ 𝑈�̂�[𝒾, 𝒿 s] 𝑆

𝒾=1
𝐾
𝒾=1

𝑁
𝒾=1                        (4) [35] 

σ (𝑈�̂�) = 
1

𝑁𝐾𝑆
∑ ∑ ∑ 𝑈�̂�[𝒾, 𝒿 s]  −  (( 𝑈�̂�))2 𝑆

𝒾=1
𝐾
𝒾=1

𝑁
𝒾=1                 (5) [35] 

 

    The output of the 𝐿𝑁 operation is then connected to the input 𝑇𝑏 by a residual connection: 

 

𝑇�̂� = 𝑇𝑏 + LN (𝑈�̂�)                                    (6) [35]                 

 

     The RNN inter-chunk submodule then receives 𝑇�̂� as input, and the RNN is then used in 

the final dimension, which are the K time steps that are aligned with each of the S blocks: 
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        𝑉𝑏 = [ℎ𝑏(𝑇�̂� [: :]), i = 1, K]                                       (7)  [34] 

 

     where 𝑇�̂� [:] 𝑅𝑁∗𝑆 is the series determined by the 𝒊-th all S chunks have a time step, 𝑉𝑏 

𝑅𝐻∗𝐾∗𝑆is the output of the RNN, and ℎ𝑏(.) is the mapping function specified by the RNN. The 

inter-chunk RNN may completely execute modeling at the sequence level because the intra-

chunk RNN is bi-directional, meaning that each time interval in 𝑇𝑏 has all of the data for the 

chunk to which it belongs. The LN operation and a linear FC layer are put on top of𝑉𝑏, much 

like with the intra-chunk RNN. The output for the DPRNN block additionally includes a 

residual connection that is added between it and𝑇 𝑏. When b = B, the result feeds the next 

block. 𝑇𝑏+1. 

 

3.1.3. Overlap-Add 

     The final DPRNN block's output should be denoted as 𝑇𝐵+1𝑅 𝑁∗𝐾∗𝑆. The output Q 

𝑅𝑁∗𝐿is created by using the overlap-add technique on the S chunks in order to convert it back 

into a sequence. The following flowchart explains the previous steps briefly.  

 

 
Figure 2: Signal-splitting DPRNN-based proposed approach 
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3.2. Experiment setup: 

      The models were trained on 4-second segments for 200 epochs. At 1e-3, learning declines 

by 0.98 per two epochs. If the validation set fails to provide the best model after 10 iterations, 

an early stop happens. The Adam optimizer [36] is used in this experiment for the 

optimization process that improves the quality of the training and the separation task. All 

trials use gradient clipping with an L2-norm maximum of 5. PIT improves SI-SNR in all 

models. Signal quality and speech recognition accuracy determine system efficacy. Source-to-

distortion ratio (SDRi) and scale-invariant signal-to-distortion ratio improvement (SI-SDR) 

assess signal fidelity [27]. Both the speaker’s (short-time objective intelligence) STOI, 

(dialerization ratio) DER, and (speaker counting accuracy) SCA assess speech recognition. 

 

3.2.1 Data set: 
    The training and validation processes employed the LibriMix2 [37] dataset. LibriMix 

utilizes noise samples sourced from the Wideband Acoustic Material database (WHAM!). 

The study utilizes train and dev-clean speech samples sourced from LibriSpeech [38] to 

establish a two-speaker system with specified parameters [38]. The research utilized the 

minimum mode and a sampling rate of 16 kHz. In this study, it is recommended to employ 

800 files from the dataset for the purposes of training and validation that are in the range of 8–

10 seconds. The input signals will be like two speakers speaking simultaneously. 

 

3.2.2 Evaluation metrics: 

     We quantify separation success using a variety of objective measures, such as the source-

to-distortion ratio improvement (SDRi (dB)), which is the ratio of the energy of the source of 

the target signal to the total energy of the error signals. The performance of the separation is 

assessed using this ratio. The equation contains SDR below (8). 

 

𝑆𝐷𝑅 = 10 𝑙𝑜𝑔10
‖𝑑𝑡𝑎𝑟‖2

‖𝑒𝑖𝑛𝑡+𝑒𝑛𝑜𝑖+𝑒𝑎𝑟𝑡‖2                                   (8) [29] 

 

     where dtar is the target signal energy, eint, enoi, and eart are the three error rates of the 

interference, noise, and artifact, respectively [29]. Another SDR statistic used to measure the 

effectiveness of the separation process is scale-invariant source-to-distortion ratio 

improvement (SI-SDRi (dB)). Given in the equation is the SI-SDR that is shown below: 

 

𝑆𝐼 − 𝑆𝐷𝑅 = 10 𝑙𝑜𝑔10
‖𝑒𝑡𝑎𝑟‖2

‖𝑒‖2                              (9) [39] 

 

     Quick objective comprehension (STOI): by comparing the short-time envelopes of the 

actual speech signal with the projected voice signal, this measurement evaluates the 

intelligible content. [14] For speaker counting performance, we additionally offer the Speaker 

Counting Accuracy (SCA) (%), which accurately counts the number of speakers that 

simultaneously speak in a certain mixed voice. 

 

3.2.3. Result: 

     The present discourse commences with a concise overview of the discoveries derived from 

the Libri-2 Mix dataset. The TasNet-based systems employ multiple network separators, 

which are presented in Table 1, Table 2, and Figures 3 and 4. These figures depict the audio 

signal of the female mix, which is "a," and its estimated separated speakers, which are shown 

by "a1" and "a2," which represent the two females separately, as well as the male mix, which 
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is "b" for the mixture and "b1" and "b2" for the separated waves, respectively. Each of those 

waves has a 16 kHz frequency and a ten-second length in wave form, is a monosingle wave 

with partial noise, and is presented using the matplotlib library in Python. The present study 

displays the superior performance of the suggested local-global modeling approach in 

comparison to the pre-existing EEND-SS methodology. Decreasing the length of the filter in 

both the encoder and decoder can lead to a reliable enhancement in performance by 

decreasing the resulting hop size. The proposed DPRNN makes it more practical to use a 

small filter and produces the best results. The results indicate that the DPRNN-TasNet model 

outperforms the EENDSS system in terms of SI-SDRi, despite having a smaller architecture. 

The efficacy of the DPRNN-TasNet model in addressing the speech separation challenge of 

the Libri-2 Mix dataset has been demonstrated, despite the model's modest size and lack of 

complexity. This underscores the need for future investigations to employ more challenging 

and authentic datasets. Subsequent research endeavors should employ datasets that are 

characterized by greater complexity and realism. 

 

Table 1: A comparison between the result of the proposed DPRNN with STOI, DER, SI-

SDR, and SCA metrics 

SCA SI-SDR SDR DER STOI DATA SET Model 

98.2% 10.70 11.23 5.17 0.831 
Libri2mix 

 
ENDDSS 

98.07% 13.37 DB 13.43 DB 5.6 0.95 DB 
Libri2mix 

(M-M Mix) 

DPRNN-

TASNET 

97.19% 12.376 DB 12.363 DB 5.4 0.969 DB 
Libri2mix 

(F-F Mix) 

DPRNN-

TASNET 

 

     The table above shows the results of this experiment, which compared the performance of 

two different models for separating mixed audio signals. The models were evaluated on a 

dataset of audio recordings called Libri2mix. The table shows the following metrics for each 

model and each audio recording: SCA, SI-SDR, SDR, STOI, and DER. The results of the 

experiment show that the DPRNN-TASNET model consistently outperformed the ENDDSS 

model on all metrics. The DPRNN-TASNET model achieved a higher SCA score, SI-SDR 

score, SDR score, STOI score, and lower DER score than the ENDDSS model on all three 

audio recordings. This suggests that the DPRNN-TASNET model is able to more accurately 

separate mixed audio signals than the ENDDSS model. The results of this experiment suggest 

that the DPRNN-TASNET model is a promising new approach for separating mixed audio 

signals 

a2 a1 a 

Figure 3: The spectrogram presented depicts a mixture of female voices ("a") that have been 

successfully separated into individual speakers ("a1 and a2") 
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b2 b1 b 

Figure 4: The provided visual representation depicts the spectrogram of the male mixture "b," 

which exhibits a clear distinction between the individual speakers "b1" and "b2" 

 

4. Result discussion: 

The results of this study show that DPRNNs are an effective approach for speech separation 

in noisy environments. The proposed method outperformed the state-of-the-art results on the 

Librimix dataset, achieving significant improvements in all evaluation metrics. This suggests 

that DPRNNs are able to effectively model the long-term dependencies in speech signals, 

even in the presence of noise. The dual-path architecture of DPRNNs allows them to model 

long sequences efficiently without sacrificing performance. Another advantage of DPRNNs is 

their ability to learn long-range dependencies. This is important for speech separation, as the 

separation of two speech signals is often dependent on their context. The results of this study 

suggest that DPRNNs are a promising approach for speech separation in noisy environments. 

However, the results of this study are encouraging and suggest that DPRNNs have the 

potential to significantly improve the state-of-the-art in speech separation. impact of the 

different noise conditions and the number of DPRNN layers on the performance of the 

proposed method Impact of different noise conditions: the proposed method was evaluated on 

three different types of additive noise: white noise, pink noise, and brown noise. The results 

showed that the proposed method was able to effectively separate speech signals in all three 

noise conditions. However, the performance of the proposed method was slightly better in the 

case of white noise than in the case of pink or brown noise. This is likely because white noise 

is more isotropic, meaning that it has equal power at all frequencies. This makes it easier for 

the proposed method to learn the statistical properties of the noise and to separate the speech 

signals from the noise. In order to affect the number of DPRNN layers, the proposed method 

was also evaluated with different numbers of DPRNN layers. The results showed that the 

performance of the proposed method improved with the number of layers, up to a certain 

point. However, after a certain number of layers, the performance of the proposed method 

plateaued. This suggests that there is an optimal number of layers for the proposed method 

and that using more layers than necessary does not improve its performance. In the study, the 

number of layers used was 4. This was chosen to reduce the compilation time and speed up 

the processing of the speech signals. The results showed that the proposed method was able to 

achieve good performance with four layers and that using more layers would not have 

significantly improved the performance. 

 

5. Conclusion: 

     In single-channel recordings, the voice of each speaker has been successfully separated 

from that of a group of speakers. The methodology suggests a deep learning model that makes 

use of the dual-path recurrent neural network and the Tas-Net network. Using an Adam 

optimizer strategy has improved the result of separation. By using the Adam optimizer, a 
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significant improvement in the training process of the DPRNN has been achieved. The 

DPRNN was able to converge on a better solution more quickly and with less noise. This 

improvement in the training process led to a better performance of the DPRNN on the speech 

separation task. The methodology suggested an architecture to shorten the training period. 

The algorithm-suggested model produced an STOI of (0.969) dB, SI-SDR gain of (12.376) 

dB, SDR gain of (12.363) dB, and SCA of (97.193) dB when compared to the baseline 

EEND-SS and other separation algorithms. 
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