Ali &Ghawi Iraqi Journal of Science , 2015, Vol 56, No.24, pp:1130-1139

/-\_-—/
Iraqi
Journal of

Science

ISSN: 0067-2904
GIF: 0.851

Some Results on Essentially Quasi-DedekindModules

Inaam Mohammed Ali '*, Tha'arY ounisGhawi’

! Department of Mathematics, College of Education for pure science Ibn AL-
Haitham, University of Baghdad, Baghdad, Iraq.

? Department of Mathematics, College of Education, University of AL-Qadisiya, Iraq.

Abstract

In this paper we give many connections between essentially quasi-Dedekind (quasi-
Dedekind) modules and other modules such that Baer modules, retractable modules,
essentially retractable modules, compressible modules and essentially compressible
modules where an R-module M is called essentially quasi-Dedekind (resp. quasi-

Dedekind) if, Hom (M /N ,M ) =0 for all N <, M (resp. N < M). Equivalently, a
module M is essentially quasi-Dedekind (resp. quasi-Dedekind) if, for each
f €End, (M), Kerf<, M implies f = 0 (resp. f # 0 implies ker / =0).

Keywords: Essentially quasi-Dedekind modules, Baer modules, retractable
modules, compressible modules, monoform modules.
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S smKerfs. M« f € End,(M) J8 813 () e il (alia ) a5 (gailSan
(s e cker f=0

1. Introduction
In this work, R is a commutative ring with unity and M be an R-module. Recall that a submoduleN

of M, N is called essential in M (N <, M ) if whenever N = (0) implies W = (0).

A submoduleN of M is called a direct summand (N<®M) if there exists a submodule/’ of M such that
N®Ww = M [1]. An R-module M 1is called retractable (resp. essentially retractable) if
Hom (M ,N)#0, for all O0#N<M(@esp. Hom(M,N)=0, for all nN< Mm).

The left annihilator of N € M in S =FEndr(M) (denoted by Ls(N)) is the setoff all elements g €S such
that ¢N = 0. The right annihilator of 7 C S in M is denoted by 7y (T) is the set of all elements
me M suchthat Tm =0, [2]. An R-module M is called prime if @"&M =amp N for ]| nonzero
submoduleN of M. An R-module M is called essentially prime if @7&RM =amr N for each <, M
[3]. Recall that an R-module is called quasi-Dedekind if Hom (M / N ,N ) =0 for all N<M, [4].

Equivalently M is quasi-Dedekind, if for each /' € End p (M ), f # 0 implies ker/ = 0, [4]. Tha'ar

in [3] gave the following: an R-module M is called essentially quasi-Dedekind R-module if
Hom (M /N ,N)=0 forall N <, M. Equivalently, M is essentially quasi-Dedekind, if for each

f eEndy (M), Kerf <, M implies =0, [3]. An R-module M is called Baer if for all N <M
, Ls(N) =Se, with e¢* =e e S = End ,(M ), [2]. Equivalently, M is Baer if, for all ideals 7 in S, ry (I) =
eMwithe® =ee S = End ,(M), [2, p.10].

Remarks and Examples(1.1):
1) Every semisimpleR-module is a Baer R-module, [2 , Ex 2.1.2]

2) Zasa Z-module is Baer,but Z" =Z ®Z ® Z ... as a Z-module is not Baer, [2, Ex 2.4.2] .

3) Z"=Z®Z®Z..® 7 is aBaer Z-module forall neN,[2,Ex2.1.2].

n-times

4) The Z-module M =Z® Z, is not Baer, even though Z andZ, are both Baer Z-modules,

[2, Ex 2.4.3].
5) Q as a Z-module is not retractable, [2, p.44] .

6) A direct summand of a retractable module, need not be retractable, for example: Z e D7 isa
retractable as Z-module, but Z,. is not retractable as a Z-module, [5, p.356].

The following proposition was given in [2, Lemma 2.2.5]. However, a different proof is given here.

Proposition(1.2):Every Baer R-module is an essentially quasi-Dedekind (K-nonsingular) R-module.

Proof : Suppose that M is a Baer R-module, let f € End,(M), f#0. To prove that Ker f <, M .If
Ker f=0 then M is a quasi-Dedekind R-module, so it is an essentially quasi-Dedekind R-module. If
Kerf # 0 ,sinceM is Baer, then by [6, Th 1.5] , Kerf <® M .Thus Kerf £, M. Thus M is an essentially

quasi-Dedekind R-module. |
The converse of (Prop 1.2) is not true in general, as the following example shows.
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Example(1.3): It is well-known that by (Rem.and.Ex 1.1(2)), M =Z ®Z ® Z ... as a Z-module is not
Baer. But Z is an essentially quasi-dedekindZ-module; that is Z is an essentially quasi-Dedekind
relative to Z. Then by [3, Th 1.3.5], M =Z @ Z ® Z ... is an essentially quasi-Dedekind Z-module.

Corollary(1.4): If M is a Baer R-module, then Endgr(M) is an essentially quasi-Dedekind ring .
Proof :Since M is a Baer R-module, so by [2, Th 4.1.1], Endr(M) is a Baer ring. Thus by (Prop 1.2),

Endgr(M) is an essentially quasi-Dedekind ring. |

Corollary(1.5): Let M be a retractable R-module. If Endg(M) is a Baer ring, then M is an essentially
quasi-Dedekind R-module.

Proof : Suppose that Endr(M) is a Baer ring, and since M is a retractable R-module, so by
[7 ,Prop 4.1.4 ], M is a Baer R-module. Thus by (Prop 1.2), M is an essentially quasi-Dedekind
R-module. |

The following proposition given in [6, Prop 3.6], we give the details of the proof.

Proposition(1.6): Let M be a retractable R-module. If M is an essentially quasi-Dedekind R-module,
then S =Endgr(M) is a right nonsingular ring and hence essentially quasi-Dedekind.
Proof :Suppose that M is an essentially quasi-Dedekind R-module. To prove that S is a nonsingular

ring, where S =Endgr(M), we must prove {¢ € S : 75 (@) <.S; } =0. Let ¢ € S such that 7,(¢) <.S, .If
¢ = 0, nothing to prove. If ¢ # 0, then Ker ¢ £, M. Hence there exists 0= N <M, N is a relative
complement to Ker¢, and so N N Kerg =0. By retractability of M, there exists w: M ——> N,

w #0. Consider the following : M —%— N —->M —% 5 M | where i is the inclusion mapping.
goioy #0, to show this: assume @oioy =0. Since y =0, there exists me€ M such that
w(m)=n#0, ne€ N, hence 0=gdoioy(m)=(goi)(n)=¢(n) which implies n € Ker¢, hence
ne NN Kerg =0 which is a contradiction.Thus ¢oioy #0, so goy # 0, implies ¥ & r5(4),
then 0 # ys & (@) .

We claim that s N7 (@) = 0. Suppose that, there exists g €wsand g € 75(@) , then & = woh
and ¢og =0 for someg,heS=End,(M), sog(M)=woh(M)cw(M)c N which implies
gM)c N, also ¢og(M)=0,hen ¢(g(M))=0 implies g(M))c Ker¢. Thus
g(M))c NN Kerg=0; that is g =0. But this contradicts the essentiality of r,(¢). Therefore
Ker¢ <. M and hence @ =0, since M is an essentially quasi-Dedekind R-module. Thus S =Endg(M)

is a right nonsingular ring and hence essentially quasi-Dedekind. |

We prove the following proposition:

Proposition(1.7): Let M be a uniform R-module. The following statements are equivalent:
1) M is an essentially quasi-Dedekind R-module.

2) M is a Baer R-module.

3) M is a quasi-Dedekind R-module.
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4) M is a prime R-module.

5) M is an essentially prime R-module.

Proof :(1) = (2): Since M is a uniform R-module, so by [4, Prop 2.1.1], M is an extending R-
module. But M is an essentially quasi-Dedekindextending R-module, implies M is a Baer R-module ,
by [7, lemma 2.2.4].

(2) = (3): Since M is a uniform R-module, so by [8, Prop 2.1.1] ,M is an indecomposable R-
module. But M is a Baer and indecomposable R-module, implies M is a quasi-Dedekind R-module, by
[2, Th 2.3.5].

(3) = (1) : It follows by [3, Rem.and.Ex 1.2.2(1)] .

(3) < (4) : It follows by [3, Th 0.2.16] .

(4) < (5) : Itisclear. |

To give the next result, we prove the following lemma.
Lemma(1.8): Let Mbe an R-module. If M is a uniform R-module, then E(M) is a uniform R-module .

Proof: LetU < E(M),U #0. To prove U W #0 for all 0= W < E(M) .Since M< E(M) , then
UnM=#0, WNM=#0. But sinceU"M<M, WAM<M and M is uniform, so that
UnMYNWM)#0. This implies(U "W)nM #0, hence U "W #0. Thus EM) is a

uniform R-module. |

Proposition(1.9): Let M be a uniform R-module with ann,(M) = ann,(E(M)). Then the following

statements are equivalent:

1)E(M) is an essentially quasi-Dedekind R-module.

2)E(M) is a Baer R-module.

3) E(M) is a quasi-Dedekind R-module.

4) M is a quasi-Dedekind R-module.

5) M is an essentially quasi-Dedekind R-module.

Proof: (1) < (2) << (3): It follows by (Lemma 1.8) and (Prop 1.7).
(3) & 4) : It follows by Lemma 1.8 and [3, Coro 0.2.18].

4) < (5) : Itisclear. |

Recall that a nonzero R-module M is compressible (resp. essentially compressible) if, M can be
embedded in each of its nonzero submodule (resp. in each essential submodule), see [9], [10]. It is
clear that every compressible module is an essentially compressible module. Recall that an R-module
M is monoform if, for each N < M and for each f € Hom(N,M), f # 0 implies Kerf =0, [9]. A
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module M is called polyform if, for all f € Hom(N,M), f #0, for all N <M implies Kerf%, N,

[10]. It is clear that every monoform module is a polyform module.

P.F.Smith in [9, Coro 2.5], prove the following proposition.

Proposition(1.10): Every compressible R-module is a monoformR-module, and hence a quasi-
Dedekind R-module.

The converse of (Prop 1.10), is not true in general, for example :TheZ-module Q is uniform and
prime, hence it is monoform [3, Prop 2.3.19], but it is not compressible, since Hom(Q,Z) =0 that is

QOcan not be embedded in Z.
The converse of (Prop 1.10) holds whenever M is finitely generated.

Proposition(1.11): Let M be a finitely generated R-module. Then M is compressible if and only if M
is monoform.

Proof : =) It is clear by (Prop 1.10).

<) By [11, Th 2.3], M is a uniform prime R-module. But M is finitely generated, so by

[11, Lemma 1.9], M is compressible. |

The condition M is finitely generated can not be dropped from (Prop 1.11). For example: The Z-
module QO is monoform, but it is not compressible. In fact O is not finitely generated.

Recall that an R-module M is called essentially prime if, ann,(M)=ann,(N)for all N<, M,

[3]. It is clear that every prime module is an essentially prime module.

Corollary(1.12): Let M be a finitely generated R-module. The following statements are equivalent:
1) M is a monoformR-module.

2) M is a uniform prime (uniform essentially prime) R-module.

3) M is a uniform quasi-Dedekind (uniform essentially quasi-Dedekind) R-module.

4) M is a compressible R-module.

Proof:(1) & (2) < (3): It follows by [3, Prop 2.3.19].

(1) < (4) : It follows by (Prop 1.11). |

Corollary(1.13): Let M be a finitely generated faithful R-module. The following statements are
equivalent:

1) M is a compressible R-module.

2) M is a monoform R-module.

3) M is a uniform prime (uniform essentially prime) R-module.

4) M is a uniform quasi-Dedekind (uniform essentially quasi-Dedekind) R-module.

5) M is a uniform nonsingular R-module.
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proof : It follows by (Coro 1.12) and [3, Prop 2.3.21]. |
Also (as we mention before) it is clear that every monoform module is a quasi-Dedekind module.
However the inverse implication holds under the class of retractable modules.

Proposition(1.14): Let M be a retractable R-module. Then M is a quasi-Dedekind R-module if and
only if M is a monoformR-module.

Proof : =) Since M is a quasi-Dedekind R-module, so by [3, Th 0.2.6], for each f € End (M),
f #0 implies Kerf = 0. Hence by [7, Prop 1.2], M is a compressible R-module, and then by

(Prop 1.10 ), M is a monoformR-module.
<) Itisclear. |

Recall that a compressible module is critically compressible if, it can not be embedded in any
proper factor module [7]. However, compressible and critically compressible modules are equivalent
under the class of modules over duo ring, where a ring R is called duo if every left (right) ideal of R is
two sided ideal. Thus compressible and critically compressible modules are equivalent under the class
of modules over commutative ring. Hence (Prop 1.3) in [7], can be restated as follows "Let M be a
retractable module. Then M is compressible if and only if M is monoform".

Hence by combining (Prop 1.14) and (Prop 1.3) in [7], we get the following corollary.

Corollary(1.15): LetM be a retractable R-module. Then the following statements are equivalent:
1) M is a compressible R-module.

2) M is a monoformR-module.

3) M is a quasi-Dedekind R-module.

By using [3,Prop 0.2.6], then (Th 1.4) in [7] can be restated as follows:

Let M be an R-module. The following statements are equivalent:

1) M is compressible and quasi-Dedekind.

2) M is compressible and Endr(M) is a domain.

3) M is retractable and quasi-Dedekind.

4) M is retractable and Endy(M) is domain.

Note that by using (Prop 1.10), the condition M is quasi-Dedekind can be dropped from (1).

However we have the following corollary:

Corollary(1.16): Let M be a retractable R-module. The following statements are equivalent:
1) M is a compressible R-module.

2) M is a monoform R-module.

3) M is a quasi-Dedekind R-module.

4) M is a uniform polyformR-module.

5) M is a uniform quasi-Dedekind (uniform essentially quasi-Dedekind) R-module.

6) Endgr(M) is a domain (Endg(M) has no zero divisors ).

Proof:(1) & (2) < (3): It follows by (Coro 1.15).

2) & @) < (5): It follows by [3, Prop 2.3.19].

(1) < (6): It follows by [7, Th 1.4]. |
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Corollary(1.17): Let M be a uniform retractable R-module. If M is nonsingular then M is
compressible.
Proof : It is clear that every uniform nonsingular is monoform. Hence the result follows by

(Coro 1.15). |

Corollary(1.18): LetM be a uniform retractable R-module. Then M is compressible if and only if M is
polyform.
Proof : =) It follows by (Prop 1.10).
<) By [3, Prop 2.3.19], M is monoform, and by (Coro 1.15), M is compressible. |

Recall that an R-module M is said to satisfy (*) if, for each nonzero submoduleN of M,
ann,(M/N) g ann,(M), [8] .Ahmed A.A in [12] proved that " Every module satisfies (*), then

Hom(M ,N)# 0, for all nonzero submodulesN of M; that is M is retractable".

Hence we conclude the following.

Corollary(1.19): Let M be an R-module satisfies (¥) and Endz(M) is a commutative ring. The
following statements are equivalent:

1) R/ann,(M)is an integral domain.

2) ann,(M)is a prime ideal of R.

3) M is a prime R-module.

4) M is a compressible R-module.

5) M is a monoformR-module.

6) M is a quasi-Dedekind R-module.

7) Endgr(M) is an integral domain.

8) M is a rational extension of N, for all N <M (i.eM is strongly uniform).
Proof :Since M satisfies (*) , M is retractable. Hence by (Coro 1.16), we get
GOR=NECIR=—N ()RS}

(1) & (2): Itisclear.

(2) < (3): It follows by [12, Prop 1.9].

3) <= (@) < (7) < (8):Itfollows by [12, Th 2.5]. |

Now we ask the following questions:

(1) What is the relationships between an essentially compressible module and an essentially quasi-
Dedekind module.

(2)What is the relationships between an essentially compressible module and a monoform module.

(3) What is the relationships between an essentially compressible module and a polyform module.

For the 1st question, we claim that an essentially compressible module implies an essentially quasi-
Dedekind module. However, we can not prove this and we can not disprove. But, the next proposition
shows that every an essentially compressible module is an essentially prime module.

Proposition(1.20): Let M be an essentially compressible R-module, then M is an essentially prime
R-module.
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Proof : Let N <, M. To prove ann,(N)=ann,(M). Let A=ann,(N),so AN = 0. Since M is
essentially ~ compressible, then there exists a  monomorphism f :M ——> N . Hence
f(AM )= Af (M) < AN = 0. This implies AM = 0, since f'is monomorphism. So that 4 c ann, (M)
; that is ann,(N) < ann,(M) . Thus ann,(N)=ann,(M). |

To answer the 2™ question, first we have.

Lemma(1.21): Let M be an R-module .Then M is monoform if and only if for each N <, M and for
each nonzero f € Hom (N,M) implies f is monomorphism.

Proof: =) Itis clear.
&)Let N<M . If N <, M then we have nothing to prove. Assume thatN<{,M and let f: N ——> M

such that f = 0. Since N<, M implies there exists K <M ( relative complement of N ) such that N ® K
<. M. Define g: N®K——>M by g (n + k) =f(n) for all n+ke N®K. 1t is clear that g is well-
defined, g#0and K < Kerg. But g is monomorfphism by hypothesis, hence K = 0. Thus our

assumption N<, M is false. Thus M ismonoform. |

Recall that an R-module M is essentially retractable if , Hom(M , N) # 0 ,for all N<.M, [10]. It is clear

that every retractable module is an essentially retractable module. Note that Z, as a Z-module is
retractable, soitis essentially retractable .

Proposition(1.22): Let M be an essentially retractable R-module. If every essential submodule of M is
quasi-Dedekind, then M is monoform.

Proof: Let N <, M and let f:N——M , f # 0. Since M is an essentially retractable R-module, then
Hom(M,N)#0.So there exists g:M——>Nand g # 0 ,thusgofeEnd,(N). We claim that
gof # 0. Since iog € End, (M), where i is the inclusion mapping, then iog # 0. But M is quasi-
Dedekind, hence [0g is monomorphism, thus g is monomorphism. Hence, if gof =0, then
g(f(N))=0 implies f(N)=0; thatis f = 0 which is a contradiction. Thus 0# gof € End,(N),
hence gof is monomorphism, since N is quasi-Dedekind by hypothesis. This implies f is

monomorphism and so by (Lemma 1.21), M is monoform. |
Before giving the next corollary, we have the following lemma.

Lemma(1.23): If M is an essentially compressible module, then M is a retractable module.
Proof: By[13,Th 3.1], for each nonzero submoduleN of M and for each endomorphism

f e Hom(M,N) , f|N # 0. Thus Hom(M ,N) # 0 ; thatis M is a retractable module. |

Corollary(1.24): Let M be an essentially compressible R-module. If every essential submodule of M
is quasi-Dedekind, then M is monoform.

Proof : By (Lemma 1.23), M is a retractable R-module and hence an essentially retractable R-module.
Thus the result is obtained by (Prop 1.22). |
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To give the next result, first we prove the following lemma.

Lemma(1.25): Let M be an R-module. Then M is polyform if and only if for each N <, M and for each
nonzero f € Hom(N,M) implies Kerf <, N.

Proof : =) It is clear.

<) Let N<M | If N <, M then we have nothing to proveIf N¢M , let f: N——> M such that

f #0. Since NM , then there exists K<M (relative complement of N), hence N @ K <, M. Define

g:N®K——>Mbygm+k) =f(n)forall n+ke N®K. Itis clear that g is well-defined, g= 0.
Hence Kerg<, N @ K by hypothesis. But

Kerg ={n+k :g(n+k)=0, n+keN @K}
={n+k:f(n)=0, neN,keK}={n+k:neKerf,keK}=Kerf®K.

Thus Kerf @K £, N @ K . Since K <.K ,then by [1, Coro 5.1.8, p.112], Kerf¥, N. Therefore M is a
polyformR-module. |

We finish this paper by the following theorem.

Theorem(1.26): Let M be an essentially compressible R-module such that every essential submodule
of M is an essentially quasi-Dedekind R-module, then M is a polyformR-module.

Proof :By(Lemma 1.25) it is enough to show that for each N<, M and f:N——>M , f #0 then
Kerf<, N. Since M is essentially compressible, then there exists g:M ——> N such that g is
monomorphism.  Hence  gof € End,(N) and gof #0 because if gof =0 then
gof(N)=g(f(N))=0 which implies f(N)=0; that is f = 0 which is a contradiction. Thus
Ker(gof) <. N , since N is essentially quasi-Dedekind. But it is easy to check that Kerf = Ker(gof).
Therefore Kerf<,N.!
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