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Abstract 

In this paper we give many connections between essentially quasi-Dedekind (quasi-
Dedekind) modules and other modules such that Baer modules, retractable modules, 
essentially retractable modules, compressible modules and essentially compressible 
modules where an R-module M is called essentially quasi-Dedekind (resp. quasi-
Dedekind) if, ( , ) 0Hom M N M  for all N ≤e M (resp. N ≤ M). Equivalently, a 
module M is essentially quasi-Dedekind (resp. quasi-Dedekind) if, for each 

)(MEndf R , Kerf ≤ e M implies f = 0 (resp. 0f  implies 0ker f ).  

Keywords: Essentially quasi-Dedekind modules, Baer modules, retractable 
modules, compressible modules, monoform modules.  

الواسعةالدیدیكاندیة - بعض النتائج للمقاسات شبھ  

٢ ، ثــــائر یونس غاوي١* أنعام محمد علي   

  

  العراق ، بغداد،جامعة بغداد ، أبن الھیثم للعلوم الصرفة كلیة التربیة، الریاضیاتقسم  ١

یاضیات ٢   العراق ،جامعة القادســیة،كلیة التربیــة، قسم الرّ

 :لخلاصةا

وأنواع )  المقاسات شبھ الدیدیكاندیة (نحن أعطینا العدید من العلاقات بین المقاسات شبھ الدیدیكاندیة الواسعة 
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علѧى  Mحیѧث یسѧمى المقѧاس ، نضغاط  الواسѧعة المقاسات القابلة للانضغاط و المقاسات القابلة للا، الواسعة
)إذا كѧان ) شѧبھ دیدیكانѧدي( دیدیكاندي واسع  -مقاس شبھ Rالحلقة  , ) 0Hom M N M   اسѧل مقѧلك

شѧبھ یѧُدعى مقѧاس  Mیكѧافىء، المقѧاس ). ، على التѧواليMمن  Nلكل مقاس جزئي ( Mمن  Nجزئي واسع 
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MEndf)(اذا كان لكل ) مقاس دیدیكاندي، على التوالي( دیدیكاندي واسع  R ،Kerf ≤ e M  یؤدي الى

0ker fعلى التوالي ،.(  

 

1. Introduction  
In this work, R is a commutative ring with unity and M  be an R-module. Recall that a submoduleN 

of M, N is called essential in M ( eN M ) if whenever NW = (0) implies W = (0). 
A submoduleN of M is called a direct summand (NM) if there exists a submoduleW of M such that 
NW = M [1]. An R-module M is called retractable (resp. essentially retractable) if 

0),( NMHom , for all MN 0 (resp. 0),( NMHom , for all eN M ).                             

The left annihilator of MN   in S =EndR(M) (denoted by LS(N)) is the setoff all elements g S such 

that 0N . The right annihilator of ST   in M is denoted by rM (T) is the set of all elements 

Mm  such that 0Tm  , [2]. An R-module M is called prime if R Rann M ann N  for all nonzero 
submoduleN of M. An R-module M is called essentially prime if R Rann M ann N  for each eN M  
[3]. Recall that an R-module is called quasi-Dedekind if ( / , ) 0Hom M N N   for all NM, [4]. 

Equivalently M is quasi-Dedekind, if for each ( ), 0Rf End M f   implies kerf = 0, [4]. Tha'ar 
in [3] gave the following: an R-module M is called essentially quasi-Dedekind R-module if 

( / , ) 0Hom M N N   for all eN M . Equivalently, M is essentially quasi-Dedekind, if for each 
( ),R ef End M K er f M   implies f = 0, [3]. An R-module M is called Baer if for all MN 

, LS(N) =Se, with )(2 MEndSee R , [2]. Equivalently, M is Baer if, for all ideals I in S, rM (I) = 

eMwith )(2 MEndSee R , [2, p.10].  
 

Remarks and Examples(1.1):  
1)  Every semisimpleR-module is a Baer R-module, [2 , Ex 2.1.2]   

2)  Z as a Z-module is Baer, but ...nZ Z Z Z    as a Z-module is not Baer, [2, Ex 2.4.2] . 

3)  ...nZ Z Z Z   Z is  a Baer Z-module for all  Nn , [2 , Ex 2.1.2] . 
n-times 
4)  The Z-module 2ZZM   is not Baer, even though Z  andZ2  are both Baer Z-modules,            

[2, Ex 2.4.3] .  
5)  Q as a Z-module is not retractable, [2, p.44] . 

6)  A direct summand of a retractable module, need not be retractable, for example: ZZ
P
  is a 

retractable as Z-module, but PZ  is not retractable as a Z-module, [5, p.356]. 
The following proposition was given in [2, Lemma 2.2.5]. However, a different proof is given here.  
 
Proposition(1.2):Every Baer R-module is an essentially quasi-Dedekind (K-nonsingular) R-module.  
Proof : Suppose that M is a Baer R-module, let  )(MEndf R , 0f . To prove that Ker f ≰e M .If  
Ker f = 0  then M is  a quasi-Dedekind  R-module, so it is an essentially quasi-Dedekind R-module. If 

0Kerf ,sinceM is Baer, then by [6, Th 1.5] , MKerf  .Thus Kerf ≰e M. Thus M is an essentially 

quasi-Dedekind R-module.   � 
The converse of (Prop 1.2) is not true in general, as the following example shows.  
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Example(1.3): It is well-known that by (Rem.and.Ex 1.1(2)), ...  M Z Z Z  as a Z-module is not 
Baer. But Z is an essentially quasi-dedekindZ-module; that is Z is an essentially quasi-Dedekind 
relative to Z. Then by [3, Th 1.3.5], ...  M Z Z Z  is an essentially quasi-Dedekind Z-module.  

Corollary(1.4): If M is a Baer R-module, then EndR(M) is an essentially quasi-Dedekind ring . 
Proof :Since M is a Baer R-module, so by [2, Th 4.1.1], EndR(M) is a Baer ring. Thus by (Prop 1.2), 
EndR(M) is an essentially quasi-Dedekind ring.   � 
 

Corollary(1.5): Let M be a retractable R-module. If EndR(M) is a Baer ring, then M is an  essentially 
quasi-Dedekind  R-module. 
Proof : Suppose that EndR(M) is a Baer ring, and since M is a retractable R-module, so by                        
[7 ,Prop 4.1.4 ], M  is a Baer R-module. Thus by (Prop 1.2), M is an essentially quasi-Dedekind              
R-module.   � 

The following proposition given in [6, Prop 3.6], we give the details of the proof. 

 
Proposition(1.6): Let M be a retractable R-module. If M  is an essentially quasi-Dedekind R-module, 
then S =EndR(M) is a right nonsingular ring and hence essentially quasi-Dedekind. 
Proof :Suppose that M is an essentially quasi-Dedekind R-module. To prove that Ss is a nonsingular 
ring, where S =EndR(M), we must prove )(:{  SrS  ≤ eSs } = 0. Let S  such that )(Sr  ≤ eSs  .If 

0 , nothing to prove. If 0 , then Ker ≰e M. Hence there exists MN 0 , N is a relative 

complement to Ker , and so 0 KerN . By retractability of M, there exists NM : , 

0 . Consider the following : MMNM i   , where i is the inclusion mapping. 

0oio , to show this: assume 0oio . Since 0 , there exists Mm  such that 

0)(  nm , Nn , hence )())(()(0 nnoimoio    which implies Kern , hence

0 KerNn  which is a contradiction.Thus 0oio , so 0o , implies )( Sr , 

then )(0  Srs  . 

We claim that 0)(   Srs . Suppose that, there exists sg  and )(Srg  , then ohg   

and 0og  for some )(, MEndShg R , so NMMohMg  )()()(   which implies
NMg )( , also 0)( Mog ,then 0))(( Mg  implies KerMg ))( . Thus 

0))(  KerNMg ; that is 0g . But this contradicts the essentiality of )(Sr . Therefore 

Ker  ≤ e M and hence 0 , since M is an essentially quasi-Dedekind R-module. Thus S =EndR(M) 
is a right nonsingular ring and hence essentially quasi-Dedekind.   � 
 

We prove the following proposition: 

Proposition(1.7): Let M be a uniform R-module. The following statements are equivalent: 
1) M is an essentially quasi-Dedekind R-module. 
2) M is a Baer R-module. 
3) M is a quasi-Dedekind R-module. 
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4) M is a prime R-module. 
5) M is an essentially prime R-module. 
Proof :(1)    (2):  Since  M  is a uniform R-module, so by [4, Prop 2.1.1], M  is an extending R-
module. But M is an essentially quasi-Dedekindextending R-module, implies M is a Baer R-module , 
by [7, lemma 2.2.4]. 
(2)    (3):  Since M is a uniform R-module, so by [8, Prop 2.1.1] ,M  is an indecomposable R-
module. But M is a Baer and indecomposable R-module, implies M  is a quasi-Dedekind R-module, by            
[2, Th 2.3.5]. 
(3)    (1)  : It follows  by [3, Rem.and.Ex 1.2.2(1)] .  
(3)   (4)  :  It follows by [3, Th 0.2.16]  . 
(4)   (5)  :  It is clear.   � 
 

To give the next result, we prove the following lemma. 

Lemma(1.8): Let Mbe an R-module. If M is a uniform R-module, then E(M) is a uniform R-module . 

Proof: Let )(MEU  , 0U . To prove 0WU  for all )(0 MEW  .Since M≤ eE(M) , then  

0MU , 0MW . But since MMU  , MMW   and M is uniform, so that 
0)()(  MWMU . This implies 0)(  MWU , hence 0WU . Thus E(M) is a 

uniform R-module.   � 

 

Proposition(1.9): Let M be a uniform R-module with ))(()( MEannMann RR  . Then the following 
statements are equivalent: 

1)E(M) is an essentially quasi-Dedekind R-module. 

2)E(M) is a Baer R-module. 

3) E(M) is a quasi-Dedekind R-module. 

4) M is a quasi-Dedekind R-module. 

5) M is an essentially quasi-Dedekind R-module.  

Proof : (1)   (2)   (3) :  It follows by (Lemma 1.8) and (Prop 1.7). 

(3)   (4)  :  It  follows by Lemma 1.8 and [3, Coro 0.2.18]. 

(4)   (5)  :  It is clear.   � 

 

Recall that a nonzero R-module M is compressible (resp. essentially compressible) if, M can be 
embedded in each of its nonzero submodule (resp. in each essential submodule), see [9], [10]. It is 
clear that every compressible module is an essentially compressible module. Recall that an R-module 
M is monoform if, for each MN   and for each ),( MNHomf  , 0f  implies  Kerf = 0, [9]. A 
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module M  is called polyform if, for all ),( MNHomf  , 0f , for all MN   implies Kerf≰e  N, 
[10]. It is clear that every monoform module is a polyform module.  

P.F.Smith in [9 , Coro 2.5], prove the following proposition.  

 

Proposition(1.10): Every compressible R-module is a monoformR-module, and hence a quasi-
Dedekind R-module.   

The converse of (Prop 1.10), is not true in general, for example :TheZ-module Q is uniform and 
prime, hence it is monoform [3, Prop 2.3.19], but it is not compressible, since 0),( ZQHom ; that is 
Qcan not be embedded in Z. 

The converse of (Prop 1.10) holds whenever M  is finitely generated. 

Proposition(1.11): Let M be a finitely generated R-module. Then M is compressible if and only if  M  
is monoform.  

Proof : )  It is clear by (Prop 1.10). 

)   By [11, Th 2.3], M is a uniform prime R-module. But M is finitely generated, so by                      
[11, Lemma 1.9], M is compressible.  � 

The condition M is finitely generated can not be dropped from (Prop 1.11). For example: The Z-
module Q is monoform, but it is not compressible. In fact Q is not finitely generated.  

Recall that an R-module M is called essentially prime if, )()( NannMann RR  for all MN e , 
[3]. It is clear that every prime module is an essentially prime module. 

 
Corollary(1.12): Let M be a finitely generated R-module. The following statements are equivalent: 
1) M is a monoformR-module. 
2) M is a uniform prime (uniform essentially prime) R-module. 
3) M is a uniform quasi-Dedekind (uniform essentially quasi-Dedekind) R-module.  
4) M is a compressible R-module. 
Proof :(1)   (2)   (3) : It  follows by [3, Prop 2.3.19]. 
(1)   (4)  : It follows by (Prop 1.11).   � 
 

Corollary(1.13): Let M  be a finitely generated faithful R-module. The following statements are 
equivalent: 
1) M is a compressible R-module.  
2) M is a monoform R-module. 
3) M is a uniform prime (uniform essentially prime) R-module. 
4) M is a uniform quasi-Dedekind (uniform essentially quasi-Dedekind) R-module.  
5) M is a uniform nonsingular R-module. 
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proof :  It follows by (Coro 1.12) and [3, Prop 2.3.21].   � 
    Also (as we mention before) it is clear that every monoform module is a quasi-Dedekind module. 
However the inverse implication holds under the class of retractable modules.  

Proposition(1.14): Let M be a retractable R-module. Then M is a quasi-Dedekind R-module if and 
only if M is a monoformR-module. 
Proof : )  Since M is a quasi-Dedekind R-module, so by [3, Th 0.2.6], for each )(MEndf R , 

0f  implies Kerf = 0. Hence by [7, Prop 1.2], M is a compressible R-module, and then by              
(Prop 1.10 ), M is a monoformR-module. 

)   It is clear.   � 

Recall that a compressible module is critically compressible if, it can not be embedded in any 
proper factor module [7]. However, compressible and critically compressible modules are equivalent 
under the class of modules over duo ring, where a ring R is called duo if every left (right) ideal of R is 
two sided ideal. Thus compressible and critically compressible modules are equivalent under the class 
of modules over commutative ring. Hence (Prop 1.3) in [7], can be restated as follows "Let M be a 
retractable module. Then M is compressible if and only if M is monoform".  

 Hence by combining (Prop 1.14) and (Prop 1.3) in [7], we get the following corollary.  

 
Corollary(1.15): LetM be a retractable R-module. Then the following statements are equivalent: 
1) M is a compressible R-module.  
2) M is a monoformR-module. 
3) M is a quasi-Dedekind R-module. 
By using [3,Prop 0.2.6], then (Th 1.4) in [7] can be restated as follows: 
Let M be an R-module. The following statements are equivalent: 
1) M is compressible and quasi-Dedekind.  
2) M is compressible and EndR(M) is a domain.   
3) M is retractable and quasi-Dedekind. 
4) M is retractable and EndR(M) is domain. 
Note that by using (Prop 1.10), the condition M is quasi-Dedekind can be dropped from (1).  
 

However we have the following corollary:  

 
Corollary(1.16): Let M  be a retractable R-module. The following statements are equivalent: 
1) M is a compressible R-module.  
2) M is a monoform R-module. 
3) M is a quasi-Dedekind R-module. 
4) M is a uniform polyformR-module. 
5) M is a uniform quasi-Dedekind (uniform essentially quasi-Dedekind) R-module.  
6) EndR(M) is a domain (EndR(M) has no zero divisors ). 
Proof :(1)   (2)   (3) :  It  follows by (Coro 1.15). 
(2)   (4)   (5) : It follows by [3, Prop 2.3.19].   
(1)   (6) : It  follows  by [7, Th 1.4].   � 
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Corollary(1.17): Let M be a uniform retractable R-module. If M is nonsingular then M is 
compressible.  
Proof : It is clear that every uniform nonsingular is monoform. Hence the result follows by                
(Coro 1.15).   � 
 

Corollary(1.18): LetM be a uniform retractable R-module. Then M is compressible if and only if M is 
polyform.  
Proof : )  It follows by (Prop 1.10). 

)  By [3, Prop 2.3.19], M is monoform, and by (Coro 1.15), M is compressible.  � 
     Recall that an R-module M is said to satisfy (*) if, for each nonzero submoduleN of M, 

)()( MannNMann RR  , [8] .Ahmed A.A in [12] proved that " Every module satisfies (*), then 
0),( NMHom , for all nonzero submodulesN of M; that is M is retractable". 

Hence we conclude the following. 

Corollary(1.19): Let M be an R-module satisfies (*) and EndR(M) is a commutative ring. The 
following statements are equivalent:  
1) )(MannR R is an integral domain.  
2) )(MannR is a prime ideal of R. 
3) M is a prime R-module.  
4) M is a compressible R-module.  
5) M is a monoformR-module. 
6) M is a quasi-Dedekind R-module. 
7) EndR(M) is an integral domain. 
8) M is a rational extension of N, for all MN  ( i.eM  is strongly uniform). 
Proof :Since M  satisfies (*) , M is retractable. Hence by (Coro 1.16), we get 
(4)   (5)   (6)   (7) . 
(1)   (2) :  It is clear.   
(2)   (3) :  It follows by [12, Prop 1.9]. 
(3)   (4)   (7)   (8) : It follows by [12, Th  2.5].   � 
 
   Now we ask the following questions: 

(1) What is the relationships between an essentially compressible module and an essentially quasi-
Dedekind module.  

(2)What is the relationships between an essentially compressible module and a monoform module. 
(3) What is the relationships between an essentially compressible module and a polyform module. 
 

For the 1st question, we claim that an essentially compressible module implies an essentially quasi-
Dedekind module. However, we can not prove this and we can not disprove. But, the next proposition 
shows that every an essentially compressible module is an essentially prime module.  

Proposition(1.20): Let M be an essentially compressible R-module, then M is an essentially prime        
R-module. 
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Proof : Let N ≤ e M. To prove )()( MannNann RR  . Let )(NannA R ,so AN = 0. Since M is 

essentially compressible, then there exists a monomorphism NMf : . Hence 
0)()(  ANMAfAMf . This implies AM = 0, since f is monomorphism. So that )(MannA R

; that  is )()( MannNann RR  . Thus )()( MannNann RR  .   � 

   To answer the 2nd question, first we have. 
 

Lemma(1.21): Let M be an R-module .Then M is monoform if and only if for each N ≤ e M and for 
each nonzero ),( MNHomf   implies  f  is monomorphism.   
Proof:  )  It is  clear. 

) Let MN  . If N ≤ e M then we have nothing to prove. Assume thatN≰eM and let MNf :  

such that 0f . Since N≰e M implies there exists MK  ( relative complement of N ) such that KN 

≤ e  M. Define MKNg :  by g (n + k) = f (n) for all KNkn  . It is clear that g is well-
defined, 0g and KergK  . But g is monomorfphism by hypothesis, hence K = 0. Thus our 

assumption N≰e M  is false. Thus M  ismonoform.   � 

Recall that an R-module M is essentially retractable if , 0),( NMHom ,for all N≤eM, [10]. It is clear 
that every  retractable module is an essentially retractable module. Note that  Z4  as a Z-module  is  
retractable,  so it is  essentially  retractable  .  
 

Proposition(1.22): Let M be an essentially retractable R-module. If every essential submodule of M is 
quasi-Dedekind, then M is monoform.  
Proof: Let N ≤ e M and let MNf : , 0f . Since M is an essentially retractable R-module, then 

0),( NMHom .So there exists NMg : and 0g ,thus )(NEndgof R . We claim that 

0gof . Since )(MEndiog R , where  i  is  the inclusion mapping, then 0iog . But M is quasi-

Dedekind, hence iog is monomorphism, thus g is monomorphism. Hence, if 0gof , then 

0))(( Nfg  implies 0)( Nf ; that is  f = 0 which is a contradiction. Thus )(0 NEndgof R , 
hence gof  is monomorphism, since N is quasi-Dedekind by hypothesis. This implies f is 
monomorphism and so by (Lemma 1.21), M is monoform.  � 
Before giving the next corollary, we have the following lemma.  

 

Lemma(1.23): If M is an essentially compressible module, then M is a retractable module.  
Proof: By[13,Th 3.1], for each nonzero submoduleN of M and for each endomorphism 

),( NMHomf   , 0Nf . Thus 0),( NMHom ; that is M  is a retractable module.   � 
 

Corollary(1.24): Let M  be an essentially compressible R-module. If every essential submodule of M 
is quasi-Dedekind, then M is monoform.  
Proof : By (Lemma 1.23), M is a retractable R-module and  hence an essentially retractable R-module. 
Thus the result is obtained by (Prop 1.22).   � 
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To give the next result, first we prove the following lemma. 

 

Lemma(1.25): Let M be an R-module. Then M is polyform if and only if for each N ≤ e M and for each 
nonzero ),( MNHomf   implies Kerf ≰e N.    
Proof : )  It is clear. 

)  Let MN  . If N ≤ e M then we have nothing to prove.If N≰eM , let MNf :  such  that 

0f . Since  N≰eM , then there exists KM (relative complement of N), hence KN  ≤ e  M. Define 

MKNg : by g (n + k) = f (n) for all KNkn  . It is clear that g is well-defined, g 0. 
Hence Kerg≰e KN   by hypothesis. But  

{ : ( ) 0 , }Kerg n k g n k n k N K        

=  },,0)(:{ KkNnnfkn  },:{ KkKerfnkn KKerf  .  

Thus KKerf  ≰e KN  . Since K ≤ eK ,then by [1, Coro 5.1.8, p.112], Kerf≰e N. Therefore M is a 

polyformR-module.   � 

We finish this paper by the following theorem. 

 

Theorem(1.26): Let M be an essentially compressible R-module such that every essential submodule 
of M is an essentially quasi-Dedekind R-module, then M is a polyformR-module.   

Proof :By(Lemma 1.25) it is enough to show that for each N ≤ e M and MNf : , 0f  then 

Kerf≰e N. Since M is essentially compressible, then there exists NMg :  such that g is 

monomorphism. Hence )(NEndgof R  and 0gof  because if 0gof  then 
0))(()(  NfgNgof  which implies 0)( Nf ; that is  f = 0  which is a contradiction. Thus 

)(gofKer ≰e N , since N is essentially quasi-Dedekind. But it is easy to check that )(gofKerKerf  . 

Therefore Kerf≰eN.� 
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