Ali &Ghawi

Some Results on Essentially Quasi-DedekindModules

Inaam Mohammed Ali¹*, Tha'arYounisGhawi²

¹ Department of Mathematics, College of Education for pure science Ibn AL-Haitham, University of Baghdad, Baghdad, Iraq.

² Department of Mathematics, College of Education, University of AL-Qadisiya, Iraq.

Abstract

In this paper we give many connections between essentially quasi-Dedekind (quasi-Dedekind) modules and other modules such that Baer modules, retractable modules, essentially retractable modules, compressible modules and essentially compressible modules where an *R*-module *M* is called essentially quasi-Dedekind (resp. quasi-Dedekind) if, Hom(M/N, M) = 0 for all $N \leq_e M$ (resp. $N \leq M$). Equivalently, a module *M* is essentially quasi-Dedekind (resp. quasi-Dedekind) if, for each $f \in End_R(M)$, $Kerf \leq_e M$ implies f = 0 (resp. $f \neq 0$ implies ker f = 0).

Keywords: Essentially quasi-Dedekind modules, Baer modules, retractable modules, compressible modules, monoform modules.

بعض النتائج للمقاسات شبه-الديديكاندية الواسعة

أنعام محمد علي * '، ثائر يونس غاوي '

· قسم الرياضيات، كلية التربية للعلوم الصرفة أبن الهيثم، جامعة بغداد ، بغداد، العراق

أقسم الرّياضيات، كلية التربية،جامعة القادسية، العراق

الخلاصة:

نحن أعطينا العديد من العلاقات بين المقاسات شبه الديديكاندية الواسعة (المقاسات شبه الديديكاندية) وأنواع أخرى من المقاسات ، كمثال : مقاسات قبه المقاسات القابلة للانسحاب ، المقاسات القابلة للانسحاب المقاسات القابلة للانسحاب المقاسات القابلة للانسحاب الواسعة ، حيث يسمى المقاس M على الواسعة ، مقاس شبه - ديديكاندي واسع (شبه ديديكاندي) إذا كان 0 = (M/N, M) لكل مقاس شبه جزئي واسع (شبه ديديكاندي) إذا كان M على الحواس مقاس M يلك مقاس شبه - ديديكاندي واسع (شبه ديديكاندي) إذا كان 0 = (M/N, M)

^{*} Email: innam1976@yahoo.com

ديديكاندي واسع (مقاس ديديكاندي، على التوالي) اذا كان لكل $Kerf \leq {}_{e}M \circ f \in End_{R}(M)$ يؤدي الى ker f = 0 ، ker f = 0

1. Introduction

In this work, R is a commutative ring with unity and M be an R-module. Recall that a submodule N of M, N is called essential in $M(N \leq_e M)$ if whenever $N \cap W = (0)$ implies W = (0).

A submodule *N* of *M* is called a direct summand $(N \le M)$ if there exists a submodule *W* of *M* such that $N \oplus W = M$ [1]. An *R*-module *M* is called retractable (resp. essentially retractable) if $Hom(M, N) \ne 0$, for all $0 \ne N \le M$ (resp. $Hom(M, N) \ne 0$, for all $N \le_e M$). The left annihilator of $N \subseteq M$ in $S = End_R(M)$ (denoted by $L_S(N)$) is the setoff all elements $g \in S$ such that $\phi N = 0$. The right annihilator of $T \subseteq S$ in *M* is denoted by $r_M(T)$ is the set of all elements $m \in M$ such that Tm = 0, [2]. An *R*-module *M* is called prime if $ann_R M = ann_R N$ for all nonzero submodule *N* of *M*. An *R*-module *M* is called essentially prime if $ann_R M = ann_R N$ for each $N \le_e M$ [3]. Recall that an *R*-module is called quasi-Dedekind if Hom(M / N, N) = 0 for all $N \le M$. [4]. Equivalently *M* is quasi-Dedekind, if for each $f \in End_R(M)$, $f \ne 0$ implies ker f = 0, [4]. Tha'ar in [3] gave the following: an *R*-module *M* is called essentially quasi-Dedekind *R*-module if Hom(M / N, N) = 0 for all $N \le_e M$. Equivalently, *M* is essentially quasi-Dedekind, if for each $f \in End_R(M)$, M is called Baer if for all $N \le M$.

, $L_S(N) = Se$, with $e^2 = e \in S = End_R(M)$, [2]. Equivalently, M is Baer if, for all ideals I in S, $r_M(I) = eM$ with $e^2 = e \in S = End_R(M)$, [2, p.10].

Remarks and Examples(1.1):

n-times

1) Every semisimple*R*-module is a Baer *R*-module, [2, Ex 2.1.2]

2) Z as a Z-module is Baer, but $Z^n = Z \oplus Z \oplus Z$... as a Z-module is not Baer, [2, Ex 2.4.2].

3) $Z^n = Z \oplus Z \oplus Z \dots \oplus Z$ is a Baer Z-module for all $n \in N$, [2, Ex 2.1.2].

- 4) The Z-module $M = Z \oplus Z_2$ is not Baer, even though Z and Z_2 are both Baer Z-modules, [2, Ex 2.4.3].
- 5) Q as a Z-module is not retractable, [2, p.44].
- 6) A direct summand of a retractable module, need not be retractable, for example: $Z_{p^{\infty}} \oplus Z$ is a retractable as Z-module, but $Z_{p^{\infty}}$ is not retractable as a Z-module, [5, p.356].

The following proposition was given in [2, Lemma 2.2.5]. However, a different proof is given here.

Proposition(1.2): Every Baer *R*-module is an essentially quasi-Dedekind (*K*-nonsingular) *R*-module. **Proof :** Suppose that *M* is a Baer *R*-module, let $f \in End_R(M)$, $f \neq 0$. To prove that $Ker f \leq_e M$. If Ker f = 0 then *M* is a quasi-Dedekind *R*-module, so it is an essentially quasi-Dedekind *R*-module. If $Ker f \neq 0$, since *M* is Baer, then by [6, Th 1.5], $Ker f \leq^{\oplus} M$. Thus $Ker f \leq_e M$. Thus *M* is an essentially quasi-Dedekind *R*-module.

The converse of (Prop 1.2) is not true in general, as the following example shows.

Example(1.3): It is well-known that by (Rem.and.Ex 1.1(2)), $M = Z \oplus Z \oplus Z$... as a Z-module is not Baer. But Z is an essentially quasi-dedekindZ-module; that is Z is an essentially quasi-Dedekind relative to Z. Then by [3, Th 1.3.5], $M = Z \oplus Z \oplus Z$... is an essentially quasi-Dedekind Z-module.

Corollary(1.4): If *M* is a Baer *R*-module, then $End_R(M)$ is an essentially quasi-Dedekind ring . **Proof :**Since *M* is a Baer *R*-module, so by [2, Th 4.1.1], $End_R(M)$ is a Baer ring. Thus by (Prop 1.2), $End_R(M)$ is an essentially quasi-Dedekind ring. \Box

Corollary(1.5): Let *M* be a retractable *R*-module. If $End_R(M)$ is a Baer ring, then *M* is an essentially quasi-Dedekind *R*-module.

Proof: Suppose that $End_R(M)$ is a Baer ring, and since M is a retractable R-module, so by [7, Prop 4.1.4], M is a Baer R-module. Thus by (Prop 1.2), M is an essentially quasi-Dedekind R-module. \Box

The following proposition given in [6, Prop 3.6], we give the details of the proof.

Proposition(1.6): Let *M* be a retractable *R*-module. If *M* is an essentially quasi-Dedekind *R*-module, then $S = End_R(M)$ is a right nonsingular ring and hence essentially quasi-Dedekind.

Proof :Suppose that *M* is an essentially quasi-Dedekind *R*-module. To prove that S_s is a nonsingular ring, where $S = End_R(M)$, we must prove $\{\phi \in S : r_s(\phi) \leq_e S_s\} = 0$. Let $\phi \in S$ such that $r_s(\phi) \leq_e S_s$. If $\phi = 0$, nothing to prove. If $\phi \neq 0$, then $Ker\phi \leqslant_e M$. Hence there exists $0 \neq N \leq M$, *N* is a relative complement to $Ker\phi$, and so $N \cap Ker\phi = 0$. By retractability of *M*, there exists $\psi : M \longrightarrow N$, $\psi \neq 0$. Consider the following $: M \xrightarrow{\psi} N \xrightarrow{i} M \xrightarrow{\phi} M$, where *i* is the inclusion mapping. $\phi oio \psi \neq 0$, to show this: assume $\phi oio \psi = 0$. Since $\psi \neq 0$, there exists $m \in M$ such that $\psi(m) = n \neq 0$, $n \in N$, hence $0 = \phi oio \psi(m) = (\phi oi)(n) = \phi(n)$ which implies $n \in Ker\phi$, hence $n \in N \cap Ker\phi = 0$ which is a contradiction. Thus $\phi oio \psi \neq 0$, so $\phi o \psi \neq 0$, implies $\psi \notin r_s(\phi)$, then $0 \neq \psi s \subsetneq r_s(\phi)$.

We claim that $\psi s \cap r_s(\phi) = 0$. Suppose that, there exists $g \in \psi s$ and $g \in r_s(\phi)$, then $g = \psi oh$ and $\phi og = 0$ for some $g, h \in S = End_R(M)$, so $g(M) = \psi oh(M) \subseteq \psi(M) \subseteq N$ which implies $g(M) \subseteq N$, also $\phi og(M) = 0$, then $\phi(g(M)) = 0$ implies $g(M)) \subseteq Ker\phi$. Thus $g(M)) \subseteq N \cap Ker\phi = 0$; that is g = 0. But this contradicts the essentiality of $r_s(\phi)$. Therefore $Ker\phi \leq_e M$ and hence $\phi = 0$, since M is an essentially quasi-Dedekind R-module. Thus $S = End_R(M)$ is a right nonsingular ring and hence essentially quasi-Dedekind. \Box

We prove the following proposition:

Proposition(1.7): Let *M* be a uniform *R*-module. The following statements are equivalent:

1) *M* is an essentially quasi-Dedekind *R*-module.

- 2) *M* is a Baer *R*-module.
- 3) *M* is a quasi-Dedekind *R*-module.

4) *M* is a prime *R*-module.

5) *M* is an essentially prime *R*-module.

Proof: (1) \Rightarrow (2): Since *M* is a uniform *R*-module, so by [4, Prop 2.1.1], *M* is an extending *R*-module. But *M* is an essentially quasi-Dedekindextending *R*-module, implies *M* is a Baer *R*-module, by [7, lemma 2.2.4].

(2) \Rightarrow (3): Since *M* is a uniform *R*-module, so by [8, Prop 2.1.1], *M* is an indecomposable *R*-module. But *M* is a Baer and indecomposable *R*-module, implies *M* is a quasi-Dedekind *R*-module, by [2, Th 2.3.5].

(3) \Rightarrow (1) : It follows by [3, Rem.and.Ex 1.2.2(1)].

- (3) \Leftrightarrow (4) : It follows by [3, Th 0.2.16] .
- (4) \Leftrightarrow (5) : It is clear. \Box

To give the next result, we prove the following lemma.

Lemma(1.8): Let M be an R-module. If M is a uniform R-module, then E(M) is a uniform R-module.

Proof: Let $U \le E(M)$, $U \ne 0$. To prove $U \cap W \ne 0$ for all $0 \ne W \le E(M)$. Since $M \le {}_{e}E(M)$, then $U \cap M \ne 0$, $W \cap M \ne 0$. But since $U \cap M \le M$, $W \cap M \le M$ and M is uniform, so that $(U \cap M) \cap (W \cap M) \ne 0$. This implies $(U \cap W) \cap M \ne 0$, hence $U \cap W \ne 0$. Thus E(M) is a uniform *R*-module. \Box

Proposition(1.9): Let *M* be a uniform *R*-module with $ann_R(M) = ann_R(E(M))$. Then the following statements are equivalent:

1)E(M) is an essentially quasi-Dedekind *R*-module.

2 E(M) is a Baer *R*-module.

3) E(M) is a quasi-Dedekind *R*-module.

4) *M* is a quasi-Dedekind *R*-module.

5) *M* is an essentially quasi-Dedekind *R*-module.

Proof: (1) \Leftrightarrow (2) \Leftrightarrow (3): It follows by (Lemma 1.8) and (Prop 1.7).

(3) \Leftrightarrow (4) : It follows by Lemma 1.8 and [3, Coro 0.2.18].

(4) \Leftrightarrow (5) : It is clear. \Box

Recall that a nonzero *R*-module *M* is compressible (resp. essentially compressible) if, *M* can be embedded in each of its nonzero submodule (resp. in each essential submodule), see [9], [10]. It is clear that every compressible module is an essentially compressible module. Recall that an *R*-module *M* is monoform if, for each $N \le M$ and for each $f \in Hom(N, M)$, $f \ne 0$ implies Kerf = 0, [9]. A module M is called polyform if, for all $f \in Hom(N, M)$, $f \neq 0$, for all $N \leq M$ implies $Kerf \leq_e N$, [10]. It is clear that every monoform module is a polyform module.

P.F.Smith in [9, Coro 2.5], prove the following proposition.

Proposition(1.10): Every compressible R-module is a monoformR-module, and hence a quasi-Dedekind R-module.

The converse of (Prop 1.10), is not true in general, for example :TheZ-module Q is uniform and prime, hence it is monoform [3, Prop 2.3.19], but it is not compressible, since Hom(Q, Z) = 0; that is Qcan not be embedded in Z.

The converse of (Prop 1.10) holds whenever M is finitely generated.

Proposition(1.11): Let M be a finitely generated R-module. Then M is compressible if and only if M is monoform.

Proof : \Rightarrow) It is clear by (Prop 1.10).

 \Leftarrow) By [11, Th 2.3], *M* is a uniform prime *R*-module. But *M* is finitely generated, so by [11, Lemma 1.9], *M* is compressible. \Box

The condition M is finitely generated can not be dropped from (Prop 1.11). For example: The Z-module Q is monoform, but it is not compressible. In fact Q is not finitely generated.

Recall that an R-module M is called essentially prime if, $ann_R(M) = ann_R(N)$ for all $N \leq_e M$, [3]. It is clear that every prime module is an essentially prime module.

Corollary(1.12): Let M be a finitely generated R-module. The following statements are equivalent: 1) M is a monoform R-module.

2) *M* is a uniform prime (uniform essentially prime) *R*-module.

3) *M* is a uniform quasi-Dedekind (uniform essentially quasi-Dedekind) *R*-module.

4) *M* is a compressible *R*-module.

Proof :(1) \Leftrightarrow (2) \Leftrightarrow (3) : It follows by [3, Prop 2.3.19].

(1) \Leftrightarrow (4) : It follows by (Prop 1.11). \Box

Corollary(1.13): Let M be a finitely generated faithful R-module. The following statements are equivalent:

1) M is a compressible R-module.

2) *M* is a monoform *R*-module.

3) *M* is a uniform prime (uniform essentially prime) *R*-module.

4) *M* is a uniform quasi-Dedekind (uniform essentially quasi-Dedekind) *R*-module.

5) *M* is a uniform nonsingular *R*-module.

proof : It follows by (Coro 1.12) and [3, Prop 2.3.21]. \Box

Also (as we mention before) it is clear that every monoform module is a quasi-Dedekind module. However the inverse implication holds under the class of retractable modules.

Proposition(1.14): Let M be a retractable R-module. Then M is a quasi-Dedekind R-module if and only if M is a monoform R-module.

Proof :=>) Since *M* is a quasi-Dedekind *R*-module, so by [3, Th 0.2.6], for each $f \in End_R(M)$, $f \neq 0$ implies Kerf = 0. Hence by [7, Prop 1.2], *M* is a compressible *R*-module, and then by (Prop 1.10), *M* is a monoform*R*-module. (Prop 1.10) It is clear.

Recall that a compressible module is critically compressible if, it can not be embedded in any proper factor module [7]. However, compressible and critically compressible modules are equivalent under the class of modules over duo ring, where a ring R is called duo if every left (right) ideal of R is two sided ideal. Thus compressible and critically compressible modules are equivalent under the class of modules over commutative ring. Hence (Prop 1.3) in [7], can be restated as follows "Let M be a retractable module. Then M is compressible if and only if M is monoform".

Hence by combining (Prop 1.14) and (Prop 1.3) in [7], we get the following corollary.

Corollary(1.15): Let*M* be a retractable *R*-module. Then the following statements are equivalent:

1) *M* is a compressible *R*-module.

2) *M* is a monoform*R*-module.

3) *M* is a quasi-Dedekind *R*-module.

By using [3,Prop 0.2.6], then (Th 1.4) in [7] can be restated as follows:

Let *M* be an *R*-module. The following statements are equivalent:

1) *M* is compressible and quasi-Dedekind.

2) *M* is compressible and $End_R(M)$ is a domain.

3) *M* is retractable and quasi-Dedekind.

4) *M* is retractable and $End_R(M)$ is domain.

Note that by using (Prop 1.10), the condition M is quasi-Dedekind can be dropped from (1).

However we have the following corollary:

Corollary(1.16): Let M be a retractable R-module. The following statements are equivalent:

1) *M* is a compressible *R*-module.

2) *M* is a monoform *R*-module.

3) *M* is a quasi-Dedekind *R*-module.

4) *M* is a uniform polyform*R*-module.

5) *M* is a uniform quasi-Dedekind (uniform essentially quasi-Dedekind) *R*-module.

6) $End_R(M)$ is a domain $(End_R(M)$ has no zero divisors).

Proof :(1) \Leftrightarrow (2) \Leftrightarrow (3) : It follows by (Coro 1.15).

(2) \Leftrightarrow (4) \Leftrightarrow (5) : It follows by [3, Prop 2.3.19].

(1) \Leftrightarrow (6) : It follows by [7, Th 1.4]. \Box

Corollary(1.17): Let M be a uniform retractable R-module. If M is nonsingular then M is compressible.

Proof : It is clear that every uniform nonsingular is monoform. Hence the result follows by (Coro 1.15). \Box

Corollary(1.18): Let M be a uniform retractable R-module. Then M is compressible if and only if M is polyform.

Proof : \Rightarrow) It follows by (Prop 1.10).

 \Leftarrow) By [3, Prop 2.3.19], *M* is monoform, and by (Coro 1.15), *M* is compressible. \Box

Recall that an *R*-module *M* is said to satisfy (*) if, for each nonzero submodule *N* of *M*, $ann_R(M/N) \not\subseteq ann_R(M)$, [8] .Ahmed A.A in [12] proved that "Every module satisfies (*), then $Hom(M,N) \neq 0$, for all nonzero submodules *N* of *M*; that is *M* is retractable".

Hence we conclude the following.

Corollary(1.19): Let *M* be an *R*-module satisfies (*) and $End_R(M)$ is a commutative ring. The following statements are equivalent:

1) $R/ann_R(M)$ is an integral domain.

2) $ann_R(M)$ is a prime ideal of *R*.

3) *M* is a prime *R*-module.

4) *M* is a compressible *R*-module.

5) *M* is a monoform*R*-module.

6) *M* is a quasi-Dedekind *R*-module.

7) $End_R(M)$ is an integral domain.

8) *M* is a rational extension of *N*, for all $N \le M$ (i.e. *M* is strongly uniform).

Proof :Since M satisfies (*), M is retractable. Hence by (Coro 1.16), we get

 $(4) \Leftrightarrow (5) \Leftrightarrow (6) \Leftrightarrow (7)$.

- (1) \Leftrightarrow (2) : It is clear.
- (2) \Leftrightarrow (3) : It follows by [12, Prop 1.9].
- (3) \Leftrightarrow (4) \Leftrightarrow (7) \Leftrightarrow (8) : It follows by [12, Th 2.5]. \Box

Now we ask the following questions:

- (1) What is the relationships between an essentially compressible module and an essentially quasi-Dedekind module.
- (2)What is the relationships between an essentially compressible module and a monoform module.
- (3) What is the relationships between an essentially compressible module and a polyform module.

For the 1st question, we claim that an essentially compressible module implies an essentially quasi-Dedekind module. However, we can not prove this and we can not disprove. But, the next proposition shows that every an essentially compressible module is an essentially prime module.

Proposition(1.20): Let M be an essentially compressible R-module, then M is an essentially prime R-module.

Proof: Let $N \leq_e M$. To prove $ann_R(N) = ann_R(M)$. Let $A = ann_R(N)$, so AN = 0. Since M is essentially compressible, then there exists a monomorphism $f: M \longrightarrow N$. Hence $f(AM) = Af(M) \subseteq AN = 0$. This implies AM = 0, since f is monomorphism. So that $A \subseteq ann_R(M)$; that is $ann_R(N) \subseteq ann_R(M)$. Thus $ann_R(N) = ann_R(M)$. \Box

To answer the 2^{nd} question, first we have.

Lemma(1.21): Let *M* be an *R*-module .Then *M* is monoform if and only if for each $N \leq_e M$ and for each nonzero $f \in Hom(N, M)$ implies *f* is monomorphism.

Proof: \Rightarrow) It is clear.

(=) Let $N \le M$. If $N \le_e M$ then we have nothing to prove. Assume that $N \le_e M$ and let $f: N \longrightarrow M$ such that $f \ne 0$. Since $N \le_e M$ implies there exists $K \le M$ (relative complement of N) such that $N \oplus K$ $\le_e M$. Define $g: N \oplus K \longrightarrow M$ by g(n + k) = f(n) for all $n + k \in N \oplus K$. It is clear that g is welldefined, $g \ne 0$ and $K \subseteq Kerg$. But g is monomorphism by hypothesis, hence K = 0. Thus our assumption $N \le_e M$ is false. Thus M ismonoform. \Box

Recall that an *R*-module *M* is essentially retractable if $Hom(M, N) \neq 0$, for all $N \leq_e M$, [10]. It is clear that every retractable module is an essentially retractable module. Note that Z_4 as a *Z*-module is retractable, so it is essentially retractable .

Proposition(1.22): Let M be an essentially retractable R-module. If every essential submodule of M is quasi-Dedekind, then M is monoform.

Proof: Let $N \leq_e M$ and let $f: N \longrightarrow M$, $f \neq 0$. Since M is an essentially retractable R-module, then $Hom(M, N) \neq 0$. So there exists $g: M \longrightarrow N$ and $g \neq 0$, thus $gof \in End_R(N)$. We claim that $gof \neq 0$. Since $iog \in End_R(M)$, where i is the inclusion mapping, then $iog \neq 0$. But M is quasi-Dedekind, hence iog is monomorphism, thus g is monomorphism. Hence, if gof = 0, then g(f(N)) = 0 implies f(N) = 0; that is f = 0 which is a contradiction. Thus $0 \neq gof \in End_R(N)$, hence gof is monomorphism, since N is quasi-Dedekind by hypothesis. This implies f is monomorphism and so by (Lemma 1.21), M is monoform. \Box

Before giving the next corollary, we have the following lemma.

Lemma(1.23): If *M* is an essentially compressible module, then *M* is a retractable module. **Proof:** By[13,Th 3.1], for each nonzero submodule*N* of *M* and for each endomorphism $f \in Hom(M, N)$, $f|_N \neq 0$. Thus $Hom(M, N) \neq 0$; that is *M* is a retractable module. \Box

Corollary(1.24): Let M be an essentially compressible R-module. If every essential submodule of M is quasi-Dedekind, then M is monoform.

Proof : By (Lemma 1.23), *M* is a retractable *R*-module and hence an essentially retractable *R*-module. Thus the result is obtained by (Prop 1.22). \Box

To give the next result, first we prove the following lemma.

Lemma(1.25): Let *M* be an *R*-module. Then *M* is polyform if and only if for each $N \leq_e M$ and for each nonzero $f \in Hom(N, M)$ implies $Kerf \leq_e N$.

Proof : \Rightarrow) It is clear.

⇐) Let $N \le M$. If $N \le_e M$ then we have nothing to prove. If $N \le_e M$, let $f: N \longrightarrow M$ such that $f \ne 0$. Since $N \le_e M$, then there exists $K \le M$ (relative complement of N), hence $N \oplus K \le_e M$. Define $g: N \oplus K \longrightarrow M$ by g(n + k) = f(n) for all $n + k \in N \oplus K$. It is clear that g is well-defined, $g \ne 0$. Hence $Kerg \le_e N \oplus K$ by hypothesis. But

Kerg = { $n + k : g(n + k) = 0, n + k \in N \oplus K$ }

 $= \{n+k : f(n) = 0, \quad n \in N, k \in K\} = \{n+k : n \in Kerf, k \in K\} = Kerf \oplus K.$

Thus $Kerf \oplus K \leq_e N \oplus K$. Since $K \leq_e K$, then by [1, Coro 5.1.8, p.112], $Kerf \leq_e N$. Therefore *M* is a polyform*R*-module. \Box

We finish this paper by the following theorem.

Theorem(1.26): Let M be an essentially compressible R-module such that every essential submodule of M is an essentially quasi-Dedekind R-module, then M is a polyformR-module.

Proof:By(Lemma 1.25) it is enough to show that for each $N \leq_e M$ and $f: N \longrightarrow M$, $f \neq 0$ then $Kerf \leq_e N$. Since M is essentially compressible, then there exists $g: M \longrightarrow N$ such that g is monomorphism. Hence $gof \in End_R(N)$ and $gof \neq 0$ because if gof = 0 then gof(N) = g(f(N)) = 0 which implies f(N) = 0; that is f = 0 which is a contradiction. Thus $Ker(gof) \leq_e N$, since N is essentially quasi-Dedekind. But it is easy to check that Kerf = Ker(gof). Therefore $Kerf \leq_e N$.

References

1.Kasch F., 1982, Modules and rings, Academic press, London.

- 2. Roman C. S, **2004**, Baer and Quasi-Baer Modules, Ph .D Thesis, M.S., Graduate, School of Ohio, State University.
- 3.Ghawi, Th.Y., **2010**, Some Generalizations of Quasi-Dedekind Modules, M.Sc. Thesis, Department of Mathematics, College of Education Ibn AL-Haitham, University of Baghdad, Baghdad, Iraq.
- 4. Mijbass, A.S., **1997**, Quasi–Dedekind Modules, Ph.D. Thesis, Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.
- 5. Vedadi M.R., **2007**, Essentially retractable Modules, *Journal of Science, Islamic Republic of Iran*, 18 (4), p. 355 360.

- 6.Rizvi, S.T. and Roman C.S., **2007**, On K- nonsingular Modules and applications, *Comm. In Algebra*, 35, p.p 2960 2982.
- 7. Rodrigues, V.S. and Sant ' Ana A.A., **2009**, A note on a problem duo Zelmanowitz, *J.Algebra and discrete .Math*, p.p 1 9.
- 8. Aref, T., 2004, π -injective Modules, M.Sc. Thesis, Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.
- 9.Zelmanowitz, J. M, **1986**, Representation of rings with faithful polyform Module, *Comm. In Algebra*, 14 (6), p.p 1141–1169.
- 10. Wisbauer, R., 1996, Modules and Algebras–Bimodule structure and Group Action on Algebras, *pitman monographs and surveys in pure and Appl.Math.*, 81 Addisson-Wesle, Longman, Harlow.
- 11. Smith, P.F., **2000**, Compressible and related Modules, In Abelian Groups Rings, Modules, and Homological Algebra, edsP.Goeters and O.M.G Jenda Chapman and Hull, Boca Raton, pp.1-29.
- 12. Ahmed, A. A., 1995, A note on compressible Modules, *Abhath AL-Yarmouk, Irbid, Jordan*, 4(2), p.p 139-148.
- 13. Smith, P.F. and Vedadi M.R., 2006, Essentially Compressible Modules and Rings, *J.Algebra*, 304, pp.812-831.