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Abstract

The purpose of this paper is to give the condition under which every weakly closed
function is closed and to give the condition under which the concepts of weakly-
semi closed function and weakly pre-closed function are equivalent. Moreover,
characterizations and properties of weakly semi closed functions and weakly pre-
closed function was given.
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Introduction :
In this section, we recall some definitions needed in this work.
Definitions1.1: Let A be a subset of a topological space (X,T)

1. Ais said to be semi-open [1] set in X if AcCl(Int(A))
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2. Ais said to be semi-closed [1] set in X if Int(CI(A))cA
3. Ais said to be pre-open [2] set in X if AcInt(CI(A))

4. A s said to be pre-closed [2] set in X if Int(Cl(Int(A))cA
5. Ais said to be a-closed [3] set in X if Cl(Int(CIA))cA

Recall that the intersection of all semi-closed sets containing A is called the semi-closure[2] of A
and denoted by S-CI (A). The pre-closure of A is the intersection of all pre-closed sets containing A.
The union of all semi-open sets contained in A is called the semi-interior [2] of A and denoted by S-
Int (A). Similarly, the pre-interior of A is the union of all pre-open sets contained in A and it is
denoted by p-Int (A).In [4] Maheshwari and Prasad introduced the consept of semi-T,-space ,a
topological space (X,T ) is said to be semi-T,-space if each distinct points x, y in X there exists two
distinct semi-open sets U and V such that xeU and ye V. Similarly, we define pre-T,-space and a- T»-
space. Levine [1] defined the semi-closed function a function f: X—Y is called semi-closed function
if the image of each closed subset of X is a semi —closed subset of Y. Similarly, we define pre-closed
function and o-closed function. Recall that in a topological space (X,T ) a G; set [5] is a countable
intersection of open sets , furthermore a topological space (X, T )is termed perfectly normal if it is
normal and every closed subset is G; set. A subset A4 of a topological space (X,T ) is called nowhere
dense (in X) if there is no neighborhood in X on which 4 is dense. JozefDobos [6] introduced the
concept of nd-preserving function, let f:X—f{X) be a function in a topological space (X,T ). We say
that f is nowhere dense sets preserving(abbreviated henceforth ad nd-preserving) if the image of a
nowhere dense set in X is a nowhere dense set in f{X).

2. Weakly Semi-Closed Functions

In this section we introduce and study the first type of weakly closed functions, namely semi-closed
function. First we recall for some definitions and facts.

Definition 2.1 [7]: A function f: X — Y is called weakly closed function or simply WC- function
iffCI(f(U) < f(CI(U) for each open set U of X.

It is known that (see [8]) a function f: X — Y is called closed function if Cl (f (U) < f(CI(U) for
each subset U of X. It is clear that every closed function is weakly closed function but the converse is
not necessarily true unless we add an extra condition as in the following proposition.

Proposition 2.2: Let f: X — Y be a weakly Closed function and suppose that for closed subset F of

X and for each y in Y with f'(y) < X-F, there exists an open set U of X such that F ¢ U and f'(y) nU
= ¢, then f'is closed function.
Proof: Let F be any closed set in X and y be any point in Y-f(F), i.e. f'(y) < X-F, hence there exists
an open set U of X such that F — U and f'(y) nU = ¢, which implies that {y}~f(U)=¢. Therefore
yeY-f(U) < Y-f(F). Since f is weakly closed function then CI(f(Int(F))) < f(F) which implies y €Int
(Y-f(Int(F))) < Y-f(F), this means that y is an interior point of Y-f(F), so Y-f is an open set of Y,
hence f(F) is closed set of Y. Therefore f'is a closed functionm

Theorem 2.3: A function f: X — Y is a semi-closed function iff S-CI(f(U) < f(CI(U)) for each subset
U of X.
Proof: suppose fis a semi-closed function and U is any subset of X. f(CI(U))

Is a semi-closed of Y and f(U) < f(CI(U)), but S-CI(f(U) is the smallest semi-closed set in Y
containing f(U), therefore and S-CI(f(U) < f(CI(U)). Conversely, suppose S-CI(f(U) < f(CI(U)) for
each subset U of X. Let V be any closed subset of X implies S-CI(f(V) < f(CI(V)), i.e. f(V) is semi-
closed set in Y. Thus fis semi-closed function m
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Corollary 2.4: If f: X — Y is weakly closed function with closed fibers then f is closed f is closed
function.
Proof: Let F be a closed set in X and let ye Y-f(F) then f'(y) c X-F, implies that f'(y) is a closed
set in X. Let U= f(y), then U is open set in X, Fc U and f'(y) N U =, so by theorem 2.3 fis closed
function m

Corollary 2.5: If f: X — Y is weakly closed, injective function and X is a T;-space then f is closed
function.

Proof: for any point y in Y f'(y)={x} is closed in X because f is injective function and X is a T-

space. Therefore by corollary 2.4 f'is closed functionm

Definition 2.6[7]: A function f: X — Y is called weakly semi-closed function or simply WSC-
function iff S-CI (f (Int(F))) < f(F)for each closed set U in X.

It is very easy to see that every WC-function is WSC-function and every semi-closed function is
WSC-function (Figure-1)

WC-function

/ N\

Closed function WSC-function

N /

Semi-closed function

_Figurel-

We are going to give an example of WSC-function which is not a semi-closed function

Example 2.7:. Let {a, b ,c}, =={¢,X,{a},{c},{a ,c}} and o={d,X,{b},{a ,b},{b, c}}. Then the identity
function Ix: (X, 1) — (X, o) is a WSC-function which is not semi-closed function since for F={b, c},
f(F) is not semi-closed set in (X, o).

The proof of the following theorem is straightforward,

Theorem 2.8[7]: For function f:X—Y the following are equivalent
(1) F is WSC-function.

(i) For each closed subset F of X, S-CI ( f (Int(F)) < f(Cl(Int(F)).
(ii1) For regular closed subset F of X S-Cl ( f (Int(F)) < f (Cl(Int(F)).
(iv) For each pre-closed subset F of X S-C1 (f(Int(F)) < f (F).

(v)  For each a-closed subset F of X S-CI (f(Int(F)) < f(F).

Now, we recall the definition of 6-closed set as follows.
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Definition 2.9[7]: A subset A of a space X is called 6-closed set if A=0-CI(A), where ,0-
Cl(A)={xeX:CI(U)NA#pV open set UcX with xe U}.
Notice that every 0-closed set is closed.

Theorem 2.10: The following statements are equivalent for a function f:X—Y

(1) F is WSC-function.

(i) For each regular open subset U of X S-CI(f(U)) < f(CI(U))

(iii) For each B Y and for each open subset U of X with f'(B) < U, there exists a semi-open set W
of Y with BCY and f'(W) cCI(U)

(iv) For each yeY and for each open set U of X with f'(y) U there exists a semi-open set W of Y
with yeW and f'(W) cCI(U).

(v) For each subset A of X S-CI(f(Int(CI(A)))) < f(CI(A)).

(vi) For each subset A of X S-CI(f(Int(6-C1(A)))) < f(06-CI(A)).

(vii) For each pre-open set A of X S-CI(f(A)) < f(CI(A)).

Proof: It is clear that (i) — (ii), (i)—(v)—(vii)—(i), (i)—(vi) and (iii))—(iv). To prove that (ii)—(iii)

let B be any subset of Y and U be any subset of X with f'(B) c U, then f'(B) nCI(X-Cl(U)) =¢ and

consequently, B n f (CI(X-CI(U)) =¢. Since X-CI(U) is a regular open set we have B n S- CI(X-

CI(U)) =¢ becauseS- CI(X-CI(U)) c f( CI(X-CI(U))). Let V= Y- [S- CI(f(X-CI(U)))], then V is semi-

open set with B < V and ' (V)  X-f' (S- CI(fX-CI(U)))) c X — f' (f (X-CI(U))) cCI(U).

Now, to prove that (iv) — (i), let F be a closed set in X and let y Y- f(F). Since f' (y) < X-F,
there exists a semi-open set W < Y with y € W and ' (W) cCI(X-F) = X- Int(F). Therefore W Y-
S-Cl(Int(F)) = ¢ this means S-CI(f(Int(F))) < f ( Int(F)) thus f is weakly semi-closed function.

We are going to prove that (iv) — (vii). Notice that 6-CI(A) = CI(A) for each pre-open set A subset
of X, so S-Cl(f(A)) < S-Cl(f(Int(CI(A)))) = S-Cl(f(Int(6-C1(A)))) < f (6-Cl(A)) = f (CI(A)).This
completes the proof of the theorem m

3. Weakly pre-Closed Function

In this sectionweintroduce and study the second type of weakly closed function, namely weakly
pre-closed function. First we recall the following definition and facts

Definition 3.1: [2] A function f:X —Y is called pre-closed function iff f{(W) is closed for each closed
set W in X.

Proposition 3.2: A function f:X —Y is a pre-closed function iff pre-CI(f(U)) cCI(f(U)) for each
subset U of X.

(Recall that pre-CI(f(U)) is the smallest pre-closed set of Y containing f(U) )

Proof: Suppose fis a pre-closed function and U is any subset of X then f(CI(U)) is a pre-closed set in
Y and contain U which implies pre-C(f(U)) < f(CI(U)). Conversely, let U be any closed set in X since
U=CI(U) then pre-CI(f(U)) < f(CI(U)) = f(U) but f(U) < pre-CI(f(U)). Therefore f(U) is a pre-closed
set in Y thus f'is a pre-closed functionm

This motivates the definition of weakly pre-closed function as following.

Definition 3.3[8]: Afunction f: X —Y is called weakly pre-closed function iff pre-Cl(f(Int (F))) < f(F)
for every closed set F in X
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It is very easy to see that every WC-function is weakly pre-closed function and every pre-closed
function is weakly pre-closed function,(Figure-2).

Weakly closed function

4 \

Closed function Weakly pre-closed function

~ /

Pre-closed function

Figure2-
The proof of the following theorem is straightforward

Theorem 3.4[8]: For a function f: X — Y the following statements are equivalent
(1) fis weakly pre-closed function

(ii) For each regular closed subset F of X pre-CI(f(Int(F))) < f(Cl(Int(F))).

(iii) For each pre-closed subset F of X pre-Cl(f(Int(F))) < f (F).

(1v) For each a-closed subset F of X pre-CI(f(Int(F))) < f (F).

It is very easy to prove the following lemma
Lemma 3.5: In A topological space (X,T ) every closed AcX, if A is nowhere dense set if and only if
IntA nowhere dense set.

Now we will prove the main theory in this paper

Theorem 3.6: let f :X — Y be nd-preserving function from perfectly normal topological space X onto
a space Y then fis WSC-function if and only if fis weakly pre-closed function

Proof. Let f be a WSC-function then S-CI (f (Int(F))) < f(F) for each closed subset F of X . let A=
Int(F) ,F closed in perfectly normal X, then F is G-delta set. hence F is nowhere dense set .By lemma
3.12 every nowhere dense set has the property Q, but f is nd- preserving function, then f (A) is
nowhere dense, therefore IntCl f (A) = ClInt f(A), which implies that f(F) 2SCI f ( A) = f(A) UIntCl
f (A)=f(A) UClInt f (A) =PCl f (A) and this complete the prove of this theorym

By Claudia C.and Daniel V. T. [9] We can replace the perfect normality in upper theory by
separable compact line space.
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