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Abstract

In the present paper, the concepts of a quasi-metric space, quasi-Banach space
have been introduced. We prove some facts which are defined on these spaces and
define some polynomials on quasi-Banach spaces and studied their dynamics, such
as, quasi cyclic and quasi hypercyclic. We show the existence of quasi chaotic in the
sense of Devaney (quasi D-chaotic) polynomials on quasi Banach space of -
summable sequences ¢, , 0<q<1 such polynomials P is defined by P((x;);)=(p(xi:m))i
where p:C—C, p(0) = 0. In general we also prove that P is quasi chaotic in the sense
of Auslander and Yorke (quasi AY-chaotic) if and only if 0 belong to the Julia set of
p, VmeN. And then we prove that if the above polynomial P on ¢, , 0<g<I is quasi
AY-chaotic then so is AP where AeR" with A>1 and P" for each n>2.
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Introduction

Let X be a separable Banach space and P:X—X be a continuous polynomial. P is called a
hypercyclic polynomial if there exist xeX such that the orbit of x under P which is denoted by

orb(P,x)={x,Px,P%,....P"

X,...} is dense in X [1]. P is cyclic polynomial if, there exist xeX such that

the linear span of orb(P,x) is dense in X [2]. For the polynomial P:X—X, (x;)i—>(p(Xi+m))i» Where X=¢,
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1<g<w0 and p:C—C is a polynomial of degree strictly greater than 1 such that p(0)=0, in [2] proved
that the hypercyclicity and chaos of the polynomial P is related to the fact that 0 is fixed point
belonging to the Julia set of p for each meN.

The sequences space €, , 0<q<I with g|[x||=[ Z|x|q]” 9 is a quasi-Banach space [3] and has the
i=
separating dual [4]. Then by [5, Th.46.8] the space ¢, , 0<q<lI is separable.

From all the above, and since every Banach space is quasi-Banach space, but the converse is not
true (see Remark 2.2) we can extend the concepts and results above such that these results are valid in
any separable quasi-Banach spaces. Thus the first aim of this paper is to give a clear picture about the
dynamics polynomials which are defined on quasi-Banach spaces. Also the characterization of the set
of quasi cyclic vectors and the set of quasi hypercyclic vectors are studied.

The second aim is to study the chaoticity of the polynomial P: €,—€; , 0<q<lI, P((x;);):=(p(xi+m))i
where p:C—C is a polynomial of degree greater than 1 such that p(0)=0, a necessary condition in
order that P is well defined, and show that the quasi hypercyclicity and quasi chaos of this polynomial
P is related to the fact that 0 belongs to the Julia set of p, and we proved some results for P.

1. Definitions and Some Results on Quasi-Metric Spaces
In this section we introduce the concepts of the quasi-metric spaces, and prove some results
concerning these concepts.

Definition(1.1) [6]: Let X be a non-empty set. A function D:XxX—R is said to be a quasi-metric
space if (1) D(x,)20, Vx,y eX and D(x,y)=0 if and only if x=y. (2) D(x,y)=D(y,x) V x,yeX. (3) there
exist constant ¢ > 1 such that D(x,y) < ¢[D(x,z)+ D(z,y)] V x,y,zeX. The pair (X,D) is called a quasi-
metric space.

It is clear that every metric space is a quasi-metric space but the converse may be not true (the
converse is true only if c=1).

Definition(1.2): Let (X,D) be a quasi-metric space, then

(a) IfxeX and € any positive real number, then the e-neighborhood of x denoted by N(x,¢) is defined
to be {yeX|D(x,y) < €}.

(b) The diameter of a subset A of X denoted by d(A) is defined by sup{D(x,y)| x,yeA}.

(¢) A subset U of X is said to be open if given any point x of U, there is a positive number €, such
that N(x,e) < ‘U.

Proposition(1.1): Let (X,D) be a quasi-metric space, then:

(a) X and ¢ are open sets, (b) The intersection of any two open sets is an open set. (¢) The union of any
family of open sets is an open set.

Proof: The proof is clear by using the same manner for a metric space.

Definition(1.3): Let (X,D) be a quasi-metric space, then the set of all open subset of X form a
topology on X. This topology is called the quasi-metric topology (or quasi-topology) induced on X by
D.

Definition(1.4): Let (X,D) be a quasi-metric space, then

(a) A sequence {x,} of element of X called convergent to the point xeX, if for € > 0 there exist a
positive integer N(g) such that D(x,,x) <&, Vn > N it is denoted by (x,—>x as n—0) , x is said to be
the limit of {x,}.

(b) A sequence {x,} in X called a Cauchy sequence if for € > 0, there exist a positive integer N(g) such
that D(xp,xm) < €, Vn,m > N.

(c) A point x is a limit point of ECX if every neighborhood contains a point y # x such that yeE, the
set of all limit points of E is called the derived set of E and denoted by E'.

(d)E is closed set if every limit point of E is a point of E.

(e) The closure of E which is denoted by E is a closed set containing E which is formed by adding E'.
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(f) The interior of E, denoted by E° is the union of all open set which are contained in E.

Definition(1.5): A quasi-metric space in which every Cauchy sequence is convergent is called a
complete quasi-metric space.

The following lemmas can be proved on any quasi-normed space [3], so that it is very easy to
prove it on any quasi-metric space.

Lemma(1.1): Let (X,D) be a quasi-metric space, then every convergent sequence is a Cauchy
sequence.

Lemma(1.2): Any closed subspace Y of a complete quasi-metric space (X,D) is a complete quasi-
metric space.

Lemma(1.3): Let E be a non-empty subset of a quasi-metric space (X,D) then
(a) E=E if and only if E is closed set.
(b) xe E if and only if there exist a sequence {x,} in E such that x,—»x as n—»o.

Definition(1.6): Let (X,D) be a quasi-metric space, and let A be a subset of X, then A is said to be
(a) Quasi dense in X if A =X.

(b) Quasi somewhere dense if (K)O 0.

(¢) Quasi nowhere dense if it is not quasi somewhere dense.

Definition(1.7): A quasi metric space is called separable if it contains a countable quasi dense subset.
The proof of the following proposition is very simple.

Proposition(1.2): A subset A of a quasi-topological space X is quasi dense if and only if every open
subset of X contains some point of A.

Definition(1.8): Let f be a map on quasi-metric space X, f is said to be quasi transitive, if for each
non-empty open subsets U and V of X, there exist neN such that /" (U)NV = ¢.

Remark(1.1): It is clear that /™ (U)NV = $if and only if (V)N U # ¢, so that we can say that the map
fis quasi transitive < for each non-empty open subsets U and V of X, there exist neN such that
ANV # ¢.

Proposition(1.3): Let /' :X—X be a continuous map on quasi-metric space (X,D), then f'is a quasi
transitive if and only if V x,yeX and Ve > 0, there exist zeX and neN such that D(x,z) < € and
D(/"(2).y) <e.

Proof: <= Let U, V be a non-empty open subsets of X, and let xeU, ye?, then there exist £,>0 such
that N(x,g;) < U, there exist & > 0 such that N(y,&;) < V. Let e=min{e},&,}, thus N(x,e) < U and
N(y,e)c?, then there exist zeX and neN such that D(x,z) < € and D(f "(z),y) < ¢, thus zeWU, f"(z)e?.
Therefore /"(U)NV+~¢, and hence f'is a quasi transitive.

=Letx, yeX, € >0 and let U=N(x,g), V=N(y,¢). Since fis a quasi transitive, there exist neN such that
T (UNV=d, thus there exist ze U such that f"(z)e?V. Therefore D(z,x) < € and D(f"(2),y) < &.

Definition(1.9): The map f on a quasi-metric space (X,D) is said to have quasi sensitive dependence
on initial conditions at xoe X , if there exist € > 0 such that for any open set U—X containing x, there
exist yoeW and neN such that D(f "(xo).f "(v0)) > €. If f has a quasi sensitive dependence on initial
conditions at each xoeX, we say that f'has a quasi sensitive dependence on initial conditions.

Recall that a point xeX is a periodic point for f'if there exist neN for which f"(x)=x, the least such
n is called its period (for n=1, such a point is called a fixed point).
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Definition(1.10) [1],[7]: The map f on a metric space X is called chaotic in the sense of Auslander and
York (AY-chaotic) if it is transitive and has sensitive dependence on initial conditions. While a map f
is called chaotic in the sense of Devaney (D-chaotic) if it is transitive, the set of periodic points of f'is
dense in X and f'has sensitive dependence on initial condition.

Note(1.1): We can extend chaotic map in the definition above when we define a function f on any
quasi-metric space (X, D) as follows.

Definition(1.11): The map f on a quasi-metric space X is called quasi chaotic in the sense of
Auslander and York (quasi AY-chaotic) if it is quasi transitive and has quasi sensitive dependence on
initial conditions. While a map f'is called a quasi chaotic in the sense of Devaney (quasi D-chaotic) if
it is quasi transitive, the set of periodic points of f is quasi dense in X and f has quasi sensitive
dependence on initial condition.

Quasi chaotic in the sense of Devaney seems to be stronger condition than quasi AY-chaos, within
our frame work.

Proposition(1.4): Let (X, D) be a separable quasi-metric space then it has a countable quasi dense
base.
Proof: Let {x, | neN} be countable quasi dense subset of X. Let B(n,m)=N(x,,1/m), where m,neN.
We shall show that B8={B(n,m)|m,neN} is a basis for the quasi-metric topology on X. let U be any
open subset of X and let xeW. Since U is open, there is a positive number € such that N(x,e)cU.
Choose any integer m > (2¢)/e, ¢=1. Since N(x,1/2m) is open and {x,)neN} is a quasi dense, there is
some x,eN(x,1/2m) (by Prop. 1.2), then xeN(x,,1/m). Since m>((2c)/e), ((2c)/m)<e, then N(x,,1/m)c
N(x,g), therefore N(x,,1/m)cU.

Then U is the union of members of B (since xeU and N(x,,1/m)c B). Since U is an arbitrary open
set then &8 is a basis for the quasi-metric topology, and #B is countable, thus X has a countable quasi
dense base.

Proposition(1.5): Let A be a non-singleton subset of the quasi-metric space (X,D), then d(A)<d(A )
<cd(A) where c>1 be a constant.

Proof: Let x,y € A, then x,y €A or x,yeA’ or xeA and yeA'. If x,y €A, then it is clear that d(A)
<cd(A), where c¢>1 be a constant. Now if x,yeA', then both N(x,e/2c;) and N(y,e/(2c c,)) meet A,
where ¢i21, i=1,2 are constants, and € be any positive number. Thus by choosing a eN(x,&/2¢;)NA and
beN(y,e/(2¢ic,))NA  we obtained that D(x,y)< c¢[D(x,a)+D(a,y)]<ci[D(x,a)tco[D(a,b)+D(b,y)]]
<cile/2¢1tcd(A)+ere/(2¢icy)] = €/2+cicd(A)+e/2 = cicrd(A)+e < cd(A), where ¢ > cicte/d(A) > 1.
Therefore d( A )<cd(A) , c=1. Now if xeA and yeA' then N(y,e/c;) meet A say in a where ¢;>1 be
constant and € be any positive number then D(x,y)<ci[D(x,a)+D(a,y)]<ci[d(A)+e/ci]=c1d(A)te<cd(A)
where c>c,+&/d(A)>1 therefore d( A )<cd(A), c>1.

And since Ac A , then d(A)<d( A ) and the proof is complete.

Proposition(1.6): A quasi-metric space (X,D) is complete if and only if given a countable family
{Ap}nen of closed, non-empty subsets of X such that AjDA,>...DA, D... and d(A,)—0 then

NA, =6.

Proof:= Suppose (X,D) is a complete quasi-metric space. VneN choose a,€A,. Let ¢ > 0, and ¢ > 1
be a constant. Then there is an integer M such that n>M = d(A,) < &/2c. If k and m are both integer
greater than M, then aan€Ama, hence D(ay,am)<c[D(ak,an)+D(a@n,am)]<c[d(Am+1)+d(Am)]
<c((e/2¢)+(e/2¢))=¢e. Thus {a,}.en is a Cauchy sequences. Since (X,D) is a complete quasi-metric
space, then a,—y, then for any n, {a,, a.,...} is also a sequence which converges to y. But A, is
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closed and {a,, au+1,...}CA, for each n, therefore yeA,. Since n was arbitrary, ye ﬂ A, therefore

ﬂAn;tq).

<Conversely suppose that given any decreasing sequence A;DA;D... of closed, non-empty subsets of
X such that d(A)—0, [ A, # ¢.
N

Let{s,}nen be a Cauchy sequence in X. set B,={sy| k>n} and A = B. VneN. Then {An}nen
satisfies the above conditions, and hence ﬂ A, # ¢. Choose ye ﬂ A, . We now show that s,—y.
N N

Let >0, then there exist an integer M such that if n > M, d(B,) < &/c, where c>1 is a constant. By
Proposition 1.6, d(A,)=d( B )< cd(B,) < c(¢/c)=¢ then D(s,,y)<e.

Theorem(1.1): (Quasi Bair Category Theorem)
Let (X,D) be a non-empty complete quasi-metric space. Then the following statements hold:
(a) If X is expressed as the union of countably many subsets A; A,,...,A,,.... Then at least one of

the A, is a quasi somewhere dense. That is, for one of the A,, A , contains an open subsets of X.
(b) if U, U, ,... are countably many quasi dense open subsets of X, then ﬂ U, is quasi dense in X,
N

that is cl([") U)=X.
N

Proof: (a) If (a) is false, then there exist countable family {A } _ of subsets of X such that
X = U A_ but (A)° = ¢ for each neN then A, #X Vn. Select b eX~A,, since X— A | is open, there
N

exist a positive number &,<1 such that N(b;,&;) © X—A ;. Set Bj=N(b1,£,/2) (see Figure-1). Then Bi=
N(b1,€1), hence §]ﬂK1 = ¢. Now B, is a non-empty open subset of X and therefore B,z A,. Choose

b,eBi— A ,. Since Bj—A, is open there exist £>0 such that N(bs,e,)c Bi—A,. With no loose of

generality, we can take ,<(1/2) in further requiring. Set B,= N(b,,&,/2), then B,cB, and B.NA =0.
By using the same manner above we can obtain a decreasing sequence of open g,-neighborhoods
B,>B;>...B,>... such that BnmAn =¢ and &,<(1/n). Then B 5B, >..5B, >... and d(B,)—0.

Then (by Prop. 1.6) nﬁn # ¢ . Pick xe an . Then xe A, for some n, since U A, =X. But then
N N N

xe An ﬂ B. which is impossible, since A , and B, are disjoint. Therefore (a) is proved.

(b) Suppose {U,}.cn is countable family of quasi dense open subsets of X. In order to prove that ﬂ
N
U, is quasi dense, it sufficient to prove that each neighborhood of any point of X meet ﬂ U,.. Choose
N
any xeX and any € > 0, we will show that N(x,s)ﬂ(n U,)#d (this suffices to prove (b) since the
N

collection of e-neighborhoods is a basis for topology induced by D). Set T=N(x,&/2), then
TcN(x,g), we now show that T ﬂ(ﬂ U,)#d. Since T is closed, the subspace T is itself a complete
N

quasi-metric space (Lemma 1.2). Set A,=T—-U,. Since A,=T—-U,, =TN(X-U,), the intersection of two
closed subsets of X, A, is closed in both X and T. Suppose A, is quasi somewhere dense. Then there

exist r€T and 8>0 such that N(1,8)N Tc A , NT=A,. Therefore N(,8) N (T-A,)=0. Now reT=
N(x,€/2) (see figure-2), hence N(z,6) meets N(x,&/2) in some point z. We may choose 3">0 such that
N(z,0)< N(£,8) N N(x,e/2). But since U, is quasi dense, N(z,0") intersect U, say in z'. Then
z'eTNN(Z,0)cA,. But A,.=T—U, and hence z'e T-U,, that is &'¢U,, a contradiction. Therefore A, must
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be quasi nowhere dense in T. Then by (a), T #| |A (note that T is a complete quasi-metric space),
q n
N

thus there exist ye T — U A . Therefore since A=T-U,, yeTﬂ(n U,). Then Tﬂ(n U,) #¢p, and
N N N

hence N(x,&) ﬂ(n U,) #¢. This completes the proof of (b).
N

T =N(x,¢/2)

Figure 1- Figure 2-

2. Polynomial on Quasi-Banach Spaces

In this section we will give the definition of quasi-Banach spaces and then study the dynamics
(quasi transitive, quasi chaotic, quasi hypercyclic and quasi cyclic) of polynomials which are defined
on quasi-Banach spaces.

Definition(2.1) [6]: If X is a vector space over a field F. A quasi-norm on X is a function 4||.[|:X—>R
satisfies the following axioms: (1) 4[x|[20 VxeX, (|lx[[=0 if and only if x=0. (2) f||Ax||=|A| oI, Vx,
VAeF. (3) there exist a constant ¢ >1 such that gx+y[|<c[q|lx[[+ ¢llV|]], Vx,yeX. The pair (X, q/x||) is
called a quasi-normed space. We say simply that X is a quasi-normed space.

Remark(2.1): It is easy to see that every quasi-normed space is a quasi-metric space (by defined
D(x,y)= o/[x-y|[) [6], also every normed space is a quasi-normed space, but the converse, in general,
may not be true (the converse is true only if c=1) [6].

Note(2.1): We will use in this section all definitions that used in the proceeding section, but on the
quasi-normed space. Thus we will only replaced the quasi-metric (X, D) by quasi-normed (X, 4|.||).

Remark(2.2): Every Banach space is a quasi-Banach space, but the converse may be not true [6].

Examples (2.1):

(1) The sequences space £, = {{xi},xi eR or C, such that Z|Xi|p <oo} ,0<p<1, with quasi
i=1

» 1/p
norm q||x|| = {Z|xi|p } is a quasi-Banach space, but it is not Banach space [3].
i=1

(2) The space of measurable functions L,, 0< p <I is a quasi-Banach space, but it is not Banach space
[6, Th. 2.1].
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Definition(2.2)[8]: Let X, Y be vector spaces. A map f :X—Y is a continuous m-homogenous

polynomial (or homogenous polynomial of degree m) if there exists a continuous m-linear mapping?

:X">Y such that /' (x)=?(x,...,x) VxeX. We say that /_‘ is associated with f or that /_‘generates 1 If

P:X—>Y is a finite sum P :Zpk of K-homogenous polynomials p:X—Y, then P is called a
k=0

(continuous) polynomial (of degree at most m). Note that every operator (bounded linear

transformation) is a 1-homogenous polynomial.

Note( 2.1):
(1). We denote by Gs-set the countable intersection of open sets [9].
(2). In the following sections X will always denote a separable quasi Banach space.

2.1 Quasi Cyclic Polynomials

Definition (2.3): Let P:X—X be a continuous polynomial on the quasi- Banach space X. & is said to

be a quasi cyclic polynomial if there exists xeX such that the linear span of orb(P,x) is a quasi dense
in X, or equivalently {q(P)x: q is a polynomial} is quasi dense in X. Such a vector x is said to be a
quasi cyclic vector for P.

Proposition(2.1): Let P:X—X be a continuous polynomial on the quasi- Banach space X. let 7° be the
set of all polynomials in P. if {W,}”—; is a basis for the quasi topology on X, then ﬂ[ U A UY)] is

n  Aep
the set of all quasi cyclic vectors for P. Hence the set of all quasi cyclic vectors for P is Gs-set.

Proof: Note that x is a quasi cyclic vector for P if and only if{q(P):q is polynomial}=X if and only
if¥n>0 there exist A in P’such that AxeW, if and only if xe A™(U,) if and only if xe U A’'(U,)if and

Aep

only if xe A'(U,)]. Since U, an open set Vn>0 and AeJis continuous then A™'(U,) is an open
[

n  Aep

set Vn>0 thus U A'(U,) is open. Therefore ﬂ[ U A"(U,)] is countable intersection of open set,

Acp n  Aep
then it is Gs-set.

Theorem(2.1): Let P:X—X be a continuous polynomial on the quasi- Banach space X, then the

following statements are equivalent:

(1)P has a quasi dense set of quasi cyclic vectors.

(2)For each non empty open subsets W and V of X, there exist polynomial q in P such that
qPYWNV =b.

(3)For each x,yeX, there exist sequences {xi}ren in X, {q, },. of polynomials in P such that x—x

and qu(P)xi—y (or g|px-x||[—0 and 4||qu(P)xi—y|| >0 as k—o0).

(4)For each x,yeX and each neighborhood V of zero in X, there exist zeX and a polynomial q in P
such that z—xe€ and q(P)z—ye?.

Proof. (1)—>(2), let W, V be non empty open subsets of X. Let 7 be the set of all polynomials in P,

let {UW,}.on be basis for the quasi topology on X. Sinceﬂ[ U A'(U,)] is the set of all quasi cyclic

n  Aep

vectors for P (from Prop. 2.1), thenﬂ[ U A'(U,)] is quasi dense in X (by(1)), thus U AU, is

n  Aep Aep

quasi dense in X for all neN. Now, assume that VA€, A(W)NV=¢, then WNA™ (V)= but V=UU,,,
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Unne {U,}nen therefore WNA™ (U=, WN[ U A'(U,)]=d which is a contradiction with the quasi

Aep
density of | J A'(U,).
Aep

(2)—>(3), let x,yeX, let Bj=N(x,1) and B''=N(y,1) by (2) there exist a polynomial q; in P such that
q1(P)B1NB" =, then there exist x;€B; such that q;(P)x;€B';. Now, let B,=N(x,(1/2)), B'»=N(y,(1/2))
by (2) there exist 4 polynomial q, in P such that q,(P)B,NB"#¢, thus there exist x,€B, such that
Q(P)x,€B",..., and so on. Therefore we get sequences {x} in X, x.eBy, Vk>1 and {q} of
polynomials in P such that qu(P)xxeB'x Vk>1. Then (|—x||<1/k and 4||qu(P)xi—y||<1/k, thus we get
xx—>x and qx(P)xy—y as k—oo.

(3)—(1), let Pbe the set of all polynomials in P, let {U,},cn be basis for the quasi topology on X. We
want to prove that ﬂ[ U A'(U,)] is quasi dense in X. for a fixed n, let yeX and x,€U,, by (3) there

n  Aep

exist sequences {xi} in X and {q,} of polynomial in P such that x;—y and qi(P)x—x,, therefore for all
large k, qu(P)xce Wy, xee A (U,), A=q(P) P then xie U A (U,) for all large k. Therefore there exist

Aep
subsequence {x'y} of sequence {xi} such that x'ye U A'(U,) and x',—>y. Then U A'(U,) is quasi
Aep Aep
dense in X, and since A is continuous, thus A™'(U,) is open, then ﬂ[ U A'(U,)] is quasi dense in X

n  Aep
(from Th. 1.1). Hence the set of all quasi cyclic vector for P is quasi dense in X (from Prop. 2.1).
(3)—>(4), let x,yeX and V be neighborhood of zero in X, by (3) there exist sequence {xi}ren in X,
{qk}ken Of polynomials in P such that x,—x and qi(P)xy—y. Let €>0, then there exist € >0 such that
albe=x||<e and 4||q(P)xe—y||<e Vk>€. Thus, since V is a neighborhood of zero there exist keN such that
xi—x Q) and q(P)z—y . Hence we get z—xe?V and qi(P)z—y e by taking z=x;.
(4)—>(3), let x,yeX, let Bj=N(0,1) by (4) there exist x;€X, a polynomial q; in P such that x;—x€B; and
qi(P)x;—yeB,. Let B)=N(0,(1/2)), by (4) there exist x,€X, a polynomial g, in P such that x,—x€B, and
Q(P)x,—y€B,,..., and so on. Then we get sequences {x.} in X, {qx} of polynomials in P such that
xc—xeBy and quP)xi—yeBx Vk. Then (|—x||<l/k and o|qu(P)xi—y||<l/k, and hence x,—x and
qk(P)x—y as k—oo.

2.2 Quasi Hypercyclic Polynomial

Definition(2.5): Let X be a quasi-Banach space and P:X—X be a continuous polynomial on X. P is
said to be quasi hypercyclic if there exists xeX such that orb(P,x)={P"x: n>0} is a quasi dense in X,
and such a vector x is called a quasi hypercyclic vector for P.

Note(2.3): It is clear that every quasi hypercyclic polynomial is a quasi cyclic polynomial. Also every
quasi hypercyclic polynomial has quasi dense range.

Proposition(2.3): Let P:X—X be a continuous polynomial on the quasi- Banach space X. If {U;}icn is
a basis for the quasi topology on X, then ﬂ[U P™(W,)] is the set of all quasi hypercyclic vectors for P.

1 n

Hence the set of all quasi hypercyclic vectors for P is Gs-set.
Proof: The vector x is a quasi hypercyclic vector for Pif and only if orb(P,x)=Xif and only if Vi
there exist neN such that P'xe; if and only ifxeP™(W)if and only ifxe | J P"(U)if and only ifxe

neN

[ P"(U)]. Therefore {x: {orb(P,x)} =X}= ([ | J P"(U)]. Now, since U; is an open set VieN and

ieN neN ieN neN
P is continuous then P(U;) is an open set ¥n>0 thus | J P™(W;) is open VieN then ([ | J P"(U)] is a
neN ieN neN

countable intersection of open set, then it is a Gs-set.
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Theorem(2.2): Let X be a quasi Banach space with no isolated point and let P:X—X be a continuous

polynomial on X. Then the following statements are equivalent:

(1) Pis quasihypercyclic,

(2) P is quasi transitive,

(3) For each x,yeX, there exist sequences {xi}xen in X, {ng} in N such that x,—x and P™ x5y

(4) For each x,yeX, each neighborhood W of zero in X there are zeX, neN such that x—zeW and
Pz—yeW.

Proof: (1)—>(2), Let U, V be non-empty open subsets of X. since P is quasi hypercyclic then there

exist n,keN, n>k such that P’xeW and P*xe?. To prove that P™5(¥V) NU=¢, suppose P (V)NU=¢,

then Vye?, prt y&U this a contradiction by taking y=Px.

(2)>(3), Let x,yeX, let Bi=N(x,1) and B'1=N(y,1) by (2) there exist n;eN such that P™ (B))NB' ¢
then there exist x;e€B, such that P™ y <B',. Now let B,=N(x,1/2), B’,=N(y,1/2) by (2) there exist n,eN
such that P™ (B,)NB',=¢ then there exist x,€B, such that P™ x,eB',,..., and so on. Therefore we get
sequences {x.} in X, xye By Vk>1 and {n;} in N such that P™ y, c¢B' Vk=1. Hence 4xi—x||<1/k and |
P™ xi—y||<1/k, then we get x,—>x and P" x,—>y as k—>co.

(3)—(1), Let {U,} .o~ be a basis for the quasi topology on X. For a fixed n, let ye X and x,€U,, by (3)
there exist sequences {x;} in X and {ny} in N such that xy,—y and P"* x,—x,, therefore for all large k,

P"™ xyeW,, xxe P (U,), then x,e U P™" (U,) for all large k. Therefore there exist subsequence {x'y}
k

of {x} such that xxe | J P™™ (U,) and x'—>y. Then | | P™" (U,) is quasi dense in X, and since P is

k k
continuous, thus P~ (U,) is open, | | P™" (U,) is open, then (Y[ J P™™ (Un)] is quasi dense in X
k n k

(from Th. 1.1). But (by Prop. 2.3) ([ P ™™ (Uu)]=the set of all quasi hypercyclic vector for P, then

n k

P is quasi hypercyclic polynomial.

(3)—>(4), Let x,yeX and W be a neighborhood of zero in X, by (3) there exist sequences {xi} in X,
{ng} in N such that x,—x and P x,—y, thus for >0 there exist meN such that ¢|[xi—x|[<e and 4| P™
x—y||<e, Vk>m. Then because W is a neighborhood of zero, there exist keN such that x,—x<qp and
P™ xi—y Q. Therefore by taking z=x,, n=n we get zeX, z—xeqp and P" z—ycqp.

(4)—>(3) Let x,yeX, let Bi=N(0,1) by (4) there exist z;€X, n;eN such that z;—xeB; and P" z,—yeB,.
Let B,=N(0,1/2), by (4) there exist z,eX , n;eN such that z,—xeB, and P" z,—yeB,,..., and so on.
Then we get sequences {zx} in X, and {ns} in N such that z;—xeBy and P" z—yeBy Vk. Then
oJlz—x]|<1/k and (|| P™ x—y||<1/k, thus z—>x and P™ z,—>y as k—o0. Therefore by taking z=x, we get
sequences {x;}in X, {ni}in N such that x;—>x and P"* x;—y.

Remark(2.3): From Remark 1.1, Proposition 2.3 and the above theorem we have the following: If P is
a quasi hypercyclic polynomial, then the set of all quasi hypercyclic vectors for P is a quasi dense Gs-
set, since if P is a quasi hypercyclic then for every non-empty open subsets U and V of X, there is a
non-negative integer n such that P (U)NV=o, thus U P™(W,) intersect any open subsets of X and then

neN
it is a quasi dense set in X. Therefore by (Th. 1.1) {x: orb(P,x) =X} is quasi dense.
Proposition(2.4): Let X be quasi-Banach space and P:X—X be a continuous polynomial on X, and let
xeX be a quasi hypercyclic vector for P, then inf{y|[P"x|:n>0}=0 and sup{ 4|[P"x||:n=0}=c0.
Proof: Suppose that inf{,|[P"x||:n>0}=r>0 since 0eX and x is a quasi hypercyclic vector for P then
there exist a sequence { P™ y} such that P" x—0, thus there exist keN such that (|| P" x||<t Vj<k

which is a contradiction with inf{y|[P"x||:n>0}=¢>0. Therefore inf{y|[P"x||:n>0}=0. Now suppose that
sup{y|[P"x||:n>0}=k<co. Let yeX such that ([y|>k. Since x is a quasi hypercyclic vector for P, there

1119



Al-Jawari & Mustafa Iraqi Journal of Science , 2015, Vol 56, No.2A4, pp:1111-1123

exist a sequence{ P" x} in orb(P,x) such that P" x—>y, thus JIPY X[ =>qlyl| (see, [10], lemma 2.2.4),

but sup {y||P"x|:n>0}=k, then [P"x||<k Vk. Therefore ||y|<k a contradiction.
Now to prove the main theorems we need the following:

Theorem(2.3)[11]: Suppose that f(z) is analytic in the region €2, and that the sequence {fi(z)}
converges to a limit function f (z) in region {2, uniformly on every compact subset of {2 . Then f'(2)
is analytic in()  Moreover f ',(z) converges uniformly to /' (z) on every compact subsets of (2.

Definition(2.6) [11]: A family of analytic functions {f,} defined on an open subsets D of C =CU{o0}is
called a normal family if every infinite subsets of {f,} contains a subsequence which converges
uniformly on every compact subsets of D. The family {f,} is not normal at z, if the family fails to be
normal in every neighborhood of z,.

Definition(2.7)[12]: The Julia set for an analytic function / on C denoted by J(f) is the set

{ze C |{f "} nex is not normal on any neighborhood of z}.
Observe that an important role in iteration theory is played by the periodic points. A periodic
point z of period k of an analytic function fis called a repelling periodic point if [(F*)'(z)>1 [7].

Theorem(2.4)[1]: Let f'be an entire function, then the Julia set of f'is the closure of the set of repelling
periodic points of £,

Theorem(2.5) [12]: Let /: C — C be an entire function then J(f)=J(f") Vn>2.

Proposition(2.8)[2]: Let /C—C be an entire function. If 0J(f') then 0eJ(Af) where LeR" such that
A>1.

Theorem(2.6)[1]: Let P:C—C be a polynomial with degree deg(P)>2. Given an element x,€C in the
Julia set of P, a neighborhood U—C of x;, €0 and a finite collection {zi,...,z,}cC, then there are
xieU, i=1,...,n and meN such that [P"(x;))—z<e, i=1,...,n.

Theorem(2.7): Let X={; , 0<q<l and meN, P:X—X be a continuous polynomial given by
P((x1);):=(p(xi+m)); where p:C—C is a polynomial of degree strictly greater than 1 such that p(0)=0.
Then the following conditions are equivalent:

1) P is quasi AY-chaotic,

2) P is quasi hypercyclic,

3) P has quasi sensitive dependence on initial condition,

4) 0 belongs to the Julia set of p.

Proof: (1)—>(2) since P is quasi AY-chaotic then P is quasi transitive, therefore P is quasi hypercyclic
(by Th. 2.2).

(2)—>(3): Let e=1, xeX, 6>0 since the set {xeXx=(xi,...,x,0,0,...),keN} is quasi dense in ¢, then
there existkeN such that ¢[x—(xi,...,%,0,0,...)[|<6. Since P is quasi hypercyclic, then there exist zeX
quasi hypercyclic vector for P such that ¢[x—z|[<d (by Remark 2.3). Now, since X :=(xi,...,x,0,0,...)

then P* X =0, thus P"X =0 Vn>k. Then 4IP" X |0 Vn=k. Now, since z is quasi hypercyclic vector then

34.] g+l
(by Prop. 2.4), sup{(|P"z|:n>0} =oo, thus we get neN satisfying (|P"z||>2? , 0<q<l, then 2

1 1
< JIP"z|[<c[|[P"z—P" X [[+|[P" X |[] but c=2% (see [3]), then 2
L 1

then 29 <(|[P"z—P" X ||< 29 [|IP"x—P"z|[+4|IP" X —P"x|]], thus 2<,|[P"x—P"z||+,|[P" X —P"x||, and since &=1
then (|[P"x—P"z|[>¢ or (|[P" X —P"x|[>¢. Therefore P has quasi sensitive dependence on initial conditions.
(3)—>(4): suppose 0¢J(p), then {p"},en is normal on some neighborhood U of 0 on which a

subsequences of {p"} converges uniformly to a finite analytic function (it can not converge to oo since
1120

=+1

2
T <[Pl 27 [|[P"z=P" X [+ [P X |1,
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p"(0)=0 Vn), then (by Th. 2.3) the derivatives also converge, therefore {(p")'},en is normal on some
neighborhood of 0, thus {(p")'},cn is uniformly bounded on some neighborhood of 0, that is there

existd, M>0 such that |(p")'(z)|<M VneN, VzeC, [z|<d then |p"z|=|I(p“)'(z)dz|£I(p“ ) (z)dz<max|(p")'(2)|
0

j|dz{ <Mz|. Then [p"z[<M[z|, ¥neN, VzeC, |z|<5. Since P((x;)):=(p(xi:m))i then
0

ng]:x%' . .)=(p(;€1+m),p(x22+m),. =),

P10, )=(0" (0 e2m)s P (X202m)s ),

Pn(x]:xZ: .. -):(pn(x]+nm):pn(x2+nm)a .. ) .
Thus q||P“x||=[z |p"(xi+nm)\]”qs[z|p"(xi)\]‘/qu[Zin|q]”q:Mq||x|| VneN and VxeX, g|l[[<d. Thus we
i= i= H

have Ve>0 there existd=(e/M) such that VneN, g|[x||<d but (|[P"x—P"0||= 4|[P"x|[<Mg|x|[<Md=e.
Therefore P does not have quasi sensitive dependence on initial conditions at 0 which is a
contradiction with assumption. Hence 0€J(p).

(4)—(1), Since we already know that (2) implies (3) and that (2)+(3)=1, we just need to prove that (4)
implies (2). By Proposition 1.3 to show that P is quasi transitive is to show that Vx,yeX, >0 there
exist neN and ¥ €X such that (| y —y|[<e, (||P" V —x|[<e. Let x,yeX, &>0. Let keN such that
q”x_(x]:"':xkaoaoa'")||<8/2(q+])/q: qHy_(y]:---:yk:oaoa'")||<8/2(q+])/q. Since OEJ(p), {x],...,xk}CC, ple

/q 11/
5:=¢/C """ k"0, then (by Th. 2.6), we find n>K, {z1,....z0cC with /<8 and |p"z-x[<S,

nm+1

i=1,2,...,k. Define, then y =01 V60,...,0,Z1  ,...,2,0,...) (Where z™ means that z; is in (nm+1)

Kk 1/q
— _ _ q
position), thus ¥ X and ” y _yHSC[q” y _(y]a'":ykaoa'-')||+q“y_(yla'"aykaoa"')||]< Ezl|i|
i=

+8/2(q+1)/q<2(1/q)k(1/q)8+(2(l/q)g/z(qﬂ)/q):z(l/q)k(l/q)g/(z(qﬂ)/qk(1/q))+2(1/q)g/z(qﬂ)/q:(g/z)_,_(g/z):g‘NOW’ Py
~(p"z1,....0"2,0,0,..), then dllp" ¥ w=eldllpr ¥~ xi00, DlFgle(xn,- 060, l <

1/q
k
1/q n_, !
Call(p"z1=x1,e D 01,0, + (c207) = 2 [ZJP % X” +(21 Vg2V <UD g2,
1=

kD) +H(e/2)=¢.
Therefore P is quasi transitive, then (by Th.2.2) P is quasi hypercyclic.

Theorem(2.8): Let X=¢,, 0<q<l, meN, and let P:X—>X be a continuous polynomial given by
P((x)i)=(p(xi+m))i Where p:C—C is a polynomial of degree strictly greater than 1 such that p(0)=0. If 0
is repelling then P is quasi D-chaotic.

Proof: Since repelling fixed points are contained in the Julia set. In view of theorem (2.7) we just have

to show the quasi density of periodic points. Since 0 is a repelling fixed point, then |p'(0)| >1. Let
xeX and £>0 and select |p'(0)| >\ >1. Let keN with I(x,...,x,0,0,...)I<(e/2"%"") and & < &(% such

that AUycp(Uy) for any disk U, centered at 0 of radius smaller than .
Since 0€l(p) and {xi,...,x}cC (by Th. 2.6), we find n>k and {z;,...,z;x} =C such that |z;;|<d

and |p"z;;—x;|<d, i=1,2,...,k. Without loss of generality n is chosen so that ZN‘“ < 1. Proceeding by
t=1
induction we select {z;eC, j>1, i=1,....k} satisfying |z;.1;/<X " & and p"zj.1=z;;, jEN, i=1,....k we

then defines z as z:=(zo1,...,2000,...,0, Z7 ' ,...,210,0,...,0, Z{™™ ), (where z]7™! (resp.

z{m )y means that zy ) (resp. za,...) is in the m+1 (resp. (m+1)n+1,...)-position), where zo ;:=p"zy ;,

. n_._,.n n n n _
1—1,...,1(, then P Z.—(p Z1,15-++5 P z],k,O,...,O, PZ21.-5 P Zz’k,o,...) —(Z()’],...,Z()’k,o,...,o, Z]’],...,Z]’k,o,...).
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Therefore z is a periodic point for P of period n. Now, take X :=(xy,...,x,0,...) then g|x-z||<c[¢|x—X [+
Jlz—X 1] when c=2"4,

k k o k k 0
Now,qllz— ¥ [F[ D loixil™ D ™ D> [zl 1< D p"zr—xiHkd™ kY (A ™8)7 1"9 <[kd™+kd*+k
i=l i=l

i=l =2 i=l t=1
- }\,_qu ]/qSk]/q8+kl/q8+ kl/qw}\‘—tnS Skl/q € 1/q € 1/q € - —tn
é( ) | tzl 6k2'a 6k2'a 6k2”q§
—oklMa & gle__® w?(‘“ <3k yla_E <& 4 & since
6k2' 6k2”q§ 6k2"1 6k2"1 32" 6(2"9) (
1/q )
K <1,) A" <1). Therefore
t=1
€ € &
e e e e
22"y 32" 62" 2 3 6

Thus the set of periodic points is quasi dense in X and hence P is quasi
D-Chaotic.

Remark(2.4): It is well known that on any quasi-Banach space X. If a continuous polynomial P" for
some neN is a quasi hypercyclic then so is P, because if P" is quasi hypercyclic on a quasi-Banach
space X, there exist xeX such that orb(P".x)={(P")*x:k>0} is a quasi dense in X. But {(P")"x:k>0}c
{P*x:k>0}, therefore {(P")*x:k>0}is a quasi dense in X, and thus x is quasi hypercyclic vector for P,
hence P is quasi hypercyclic polynomial.

The following theorem shows that the converse is also true on the space ¢, , 0<g<l1.

Theorem(2.9):Let X=¢, , 0<g<l, and let P:X—X be a continuous polynomials given by
P((x1);):=(p(xi+m)); where p:C—C is a polynomial of degree greater than 1 such that p(0)=0. If P is
quasi hypercyclic, then P" is also quasi hypercyclic for each n > 2.

Proof: Since P is quasi hypercyclic on ¢, , 0<q<I, then (by Th. 2.7) 0€J(p), and since J(p)=J(p") Vn=>2
(by Th. 2.5) thus (by Th. 2.7) P" is quasi hypercyclic for each n > 2.

Theorem(2.10): Let X=f, , 0<q<l and let P:X—X be a continuous polynomial given by
P((x1);):=(p(xi+m)); where p:C—C is polynomial of degree strictly greater than 1 such that p(0)=0. If P
is quasi hypercyclic then so is AP for each L eR" with A>1.

Proof: Since P quasi hypercyclic polynomial then from theorem (2.7) 0€J(p). Thus (by Prop. 2.8)
0eJ(Ap), AeR" with A>1, then (by Th. 2.7) we get that AP is quasi hypercyclic.

Note that by the same proof of the theorem 2.10 (resp. of theorem 2.9) we can show that if P is
quasi AY-chaotic on €, 0<q<1 thenAP (resp. P" vp>2) is also quasi AY-chaotic for each LeR" with
A>1.

In the following proposition we consider the weighted polynomials on quasi-Banach space ¢, ,
0<qg<lI.

Proposition(2.9): Let X={, , 0<q<l and let P:X—X be a continuous polynomial given by
P((x)i)=(p(xi+m))i where p:C—C is polynomial of degree strictly greater than 1 such that p(0)=0. If P
is quasi hypercyclic then P has quasi sensitive dependence on initial conditions.

Proof: Fore =1, given xef, andd > 0, then we can find keN such that 4x—(x,...,%,0,0,...)||<8.
Since P is a quasi hypercyclic, then (by Remark 2.3) there exist zef, quasi hypercyclic vector for P
such that g||x-z|[<d.

Now X =(x1,...,%x,0,0,...)

P X =(3 p(x2), % p(x3),...)

P> X =(3 p(§p(%3), $ p(§ P(xa)),..)
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P’ X =(% p(4 p(F PGa))), 3 (4 P(£PGxs))).-)

P X (£ p(3p(... T P(rice).- ),

And since p(0)=0 then P*( X )=0 since (x,.1=0) thus P"( ¥ )=0, Vn>k and then ,||P" X ||, Vn>k. Since

z is quasi hypercyclic vector for P, then (by Prop. 2.4) sup{,|[P"z||:n>0}=00, then we get neN
satisfying: o[P"z|> 2" Then 2% < J[Pz|I< c[y[[P"z — P"X|| + oP"¥ ] =2° [IP"z—P" X || + 0], then

L |
2q

< IP"z—P" X || <2° [IP"x — P"z|| + {[P" ¥ — P[], thus 2< ([[P"x — P"z|[+ o[[P" ¥ —P"x||, and since

e=1 then ¢|[P" x —P"x|[>¢ or ([P"x—P"z|[>¢. Hence P has quasi sensitive dependence on initial conditions.

Also we can prove that in proposition (2.9) if the polynomial P given by P((xi);):=(Wip(xi+1))

where {w;: ieZ} be a bounded sequence of real numbers, then P has quasi sensitive dependence on
initial conditions if P is quasi hypercyclic.
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