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Abstract 
     Dissolved oxygen, phytoplankton, and zooplankton populations represent the 

basis of the proposed mathematical model designed to investigate the impact of the 

depletion of dissolved oxygen in the plankton ecosystem. The dynamic analysis of 

the model is devoted to locating all possible equilibrium points. The analysis 

demonstrates that three equilibrium positions are possible. The existence of the 

Hopf-bifurcation for the interior equilibrium is investigated using the 

phytoplankton's photosynthesis-produced oxygen rate as the bifurcation parameter. 

Conditions for stable limit cycles are obtained. In conclusion, a numerical 

simulation is shown as evidence to support the analytic results. 

 

Keywords: Food chain model, Prey-predator model, Mutual interaction, Harvesting, 

Stability. 

 

 تحليل استقرار استنفاد الأوكسجين المذاب لنموذج العوالق النباتية و الحيوانية في بيئة مائية
 

 , شيرين رسول جواد*أحمد علي احمد
 قسم الرياضيات , كلية العلوم ,جامعة بغداد , قسم الرياضيات , بغداد, العراق

 
 الخلاصة 

النباتية و الحيوانية أساس النموذج الرياضي المقترح كسجين المذاب و مجموعات العوالق و تشكل الأ     
كسجين المذاب في النظام البيئي للعوالق. التحليل الديناميكي للنموذج مكرس و الأ ق من تأثير استنفادللتحق

لتحديد نقاط التوازن الممكنة. يوضح التحليل أن ثلاثة أوضاع توازن ممكنة. تم التحقق من وجود تشعب هوبف 
كسجين الناتج عن التمثيل الضوئي للعوالق النباتية كمعامل التشعب. يتم و لداخلي باستخدام معدل الأللتوازن ا

الحصول على شروط دورات الحد المستقرة. في الختام , يتم عرض محاكاة عددية كدليل لدعم النتائج 
  التحليلية.

 
1. Introduction 

     Since dissolved oxygen dynamics are such an important indication of the overall health of 

marine ecosystems. There is a lot of interest in trying to understand them better [1-3]. 

Phytoplankton is the most plant-like planktonic communities; they produce most of the 

oxygen in the seas through photosynthesis that represents the basis of the marine food web. It 

is well-known that changes in factors like salinity, temperature, and nutrient availability 

greatly affect the quantity of oxygen phytoplankton production. In addition, phytoplankton's 
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oxygen production varies significantly between day and night. Therefore, the relationship 

between phytoplankton and dissolved oxygen is vital to the survival of most species from the 

simplest (a single cell) to the most complex. Changes in the production of oxygen can have 

profound effects on marine life [4]. Some environmental factors, such as temperature, 

influence the proliferation and biomass of phytoplankton. Oxygen is produced during 

photosynthesis during the day and absorbed during respiration at night, so dissolved oxygen 

levels in water fluctuate daily. Therefore, phytoplankton communities are useful indicators of 

environmental changes [5-7]. There are many studies on this important issue, for instance, 

Mondal et al. [8] studied the coupled plankton-oxygen dynamics in the ocean that are affected 

by a low oxygen production rate which can result in oxygen depletion and species extinction. 

Furthermore, the primary objective of the study of theoretical ecology is to identify the 

various dynamical mechanisms underlying interactions between prey and predator [9-15]. The 

relationship between phytoplankton and zooplankton is an example of a predator-prey 

interaction that reveals numerous aspects of marine ecology. Phytoplankton contributes 

substantially to aquatic ecosystems including producing vast quantities of oxygen, managing 

natural resources and water quality that can establish numerous food webs [16]. Plankton 

dynamics research is a fascinating field of study. Plankton constitutes the building elements of 

all aquatic food chains with phytoplankton occupying the first trophic level [17]. Toxins are 

produced by phytoplankton which serves an essential environmental function and cannot be 

ignored. It has been demonstrated that environmental stress factors, optimal environmental 

conditions, nutrient-limited environments, and others. Similar factors are significant 

contributors to the release of pollutants. Certain phytoplankton species are notorious for 

generating and emitting toxic or allelochemicals which can be detrimental to other 

phytoplankton species [18]. For instance, Venturino et al. [19] demonstrated that toxin-

producing phytoplankton acts as a control agent for the cessation of plankton blooms. Baghel 

and Dhar [20] examined the effect of dissolved oxygen on the presence of a planktonic 

population that interacts. They conclude that the Hopf-bifurcation in the interior equilibrium 

is possible if the phytoplankton growth rate is selected as the bifurcation parameter. 

This study aims to investigate the oxygen-plankton model's dynamics due to the combined 

effects of the phytoplankton refuge and the toxins produced by phytoplankton. In addition, we 

assume that the zooplankton consumes both hazardous and non-toxic phytoplankton in our 

model. We also consider that certain phytoplankton species can avoid zooplankton predators 

by hiding in different bottom strata. These sediments provide a cover for the prey from their 

predators. The structure of this work is as follows: In Section 2, we build the structure of the 

proposed model. Section 3 explains the feasibility requirements and stability conditions for all 

steady states. The prevalence of the Hopf bifurcations is also illustrated in Section 4. In 

Section 5, we undertake the MATLAB program for the numerical simulations to validate the 

analytical results. 

 

2. Assumptions of the Model 

     Let  ( ) be the phytoplankton population at time  ; phytoplankton is expected to come in 

two kinds, toxic and non-toxic.  ( )  is the zooplankton density at time  ; assuming that 

zooplankton feeds on the preceding two categories. In addition, we believe that some 

phytoplankton populations have a low risk of being consumed by zooplankton if they can hide 

in the various sediments found on the seafloor. These sediments provide a cover for the prey 

from their predators.  ( ) represents the dissolved oxygen concentration in an aquatic 

environment. The phytoplankton also releases oxygen into the atmosphere since they carry 

out photosynthesis throughout the day. The pace of oxygen depletion is also influenced by 

several other variables including the breathing of marine creatures, the use of oxygen by 

phytoplankton at night, and the progressive decrease in oxygen concentration brought on by 
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chemical processes in the water. The following set of ordinary differential equations  governs 

the structure of the dynamics of the proposed system: 

   

  
 

  

(       )
    (   )        (     )  

  

  
 

   (   ) 

(       )
       (   )    (     )  

  

  
  (    )                    (     )  

      

 

     (1) 

      with the initial conditions  ( )         ( )        and  ( )       . In the 

first equation of the system (1), 
  

(       )
  represents the absorption of dissolved oxygen from 

phytoplankton with the growth rate  . The maximum growth rate of the phytoplankton 

population is      at     . Moreover, (   ) represents the proportion of unprotected 

toxic and non-toxic phytoplankton consumed by various zooplankton types. All parameters 

for the dissolved oxygen-phytoplankton-zooplankton model are assumed to be positive. The 

description of the system (1) parameters is clarified in Table 1.  

 

Table 1: System's (1) Parameters description. 

Parameters Biological interpretation 

  The growth rate of phytoplankton. 

   The capture rate of the available non-toxic phytoplankton by zooplankton. 

  (   ) The proportion of protected phytoplankton. 

   The conversion rate from phytoplankton to zooplankton. 

  The predation rate of toxic phytoplankton by zooplankton. 

   The phytoplankton's natural death rate. 

   The zooplankton's natural death rate. 

   The phytoplankton saturation constant. 

   the zooplankton saturation constant. 

   The constant concentration of dissolved oxygen that comes from other sources. 

  The replenishment rate of oxygen in marine. 

  
the amount of oxygen produced as a result of the process of photosynthesis carried out 

by phytoplankton. 

  the natural depletion rate of oxygen. 

   The consumption of oxygen by phytoplankton during the night. 

   The consumption of oxygen by zooplankton. 

Further, the following Figure illustrates the schematic sketch of the system (1). 
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Figure 1: Schematic diagram of the system (1). 

 

      In addition, the right-hand side equations of the system (1) are   (  
 ), where   

  
{(     )            }. Consequently, they are Lipschitzian. Therefore, the solution 

of the system (1)  exists and is unique. 

  

3. Existence of equilibria     

   System (1) has three non-negative steady points, namely: 

1. The dissolved oxygen equilibrium point (DOEP) is given by    (     ̂)  where  ̂  
   

   
  

2. The zooplankton free equilibrium point (ZFEP) is given by    ( ̅    ̅), where  ̅  

      
 

  
, and  ̅  

(   )

    (      
 

  
)
[   

 

  
]. For  ̅ and  ̅ to be positive, the following 

two conditions must be satisfied: 

       
 

  
 

 

  
   .           (1) 

3. The coexisting equilibrium point (CEP) given by    (        ), where   
  (       )

(   )     (       ) 
   

 

  (   )(       )
 

  

  (   )
, and   is the root of the following 

equation: 

    
     

             (3) 

where 

      (   )(   )   , 

            (   )          (   )(      )         (   )      , 
         (   )(       )      (   )(   )                 
  (   )(   )               

         (   )(     ), 

        (   )                                
              

            
  . 

Using Descartes's rule of sign, equation (3) has a unique positive root, say     , if one of 

the following sets of conditions hold: 

      and     , 

     and     . 

  (4) 

  (5) 

For   and   to be positive, the following two conditions must be satisfied: 

     (       )  
    (       )  

 (6) 

 (7) 
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4. The stability analysis  

     The feature of the eigenvalues of the Jacobian matrix  (     ) at an equilibrium point is 

directly related to the behavior of the system (1) near an equilibrium point. The  (     ) at 

any point, say (     )  can be written as follows: 

  (   )   
  

where      
 

(       )
    (   )            (   ) ;     

  

(       ) 
; 

    
  (   ) 

(       )
  (   ) ;     

  (   ) 

(       )
     (   ) ;     

   (   ) 

(       ) 
; 

         ;         ;      (           ). 

Keeping this in mind, we take a look at the system (1) around each equilibrium point: 

1. The Jacobian matrix at the    (     ̂) is given as: 

 (  )  [

 

(       ̂)
     

     
     ̂     ̂     

] 

Then,   (  ) has the eigenvalues     
 

(       ̂)
                 and         . 

   is a locally asymptotically stable point if and only if 

     (       ̂)  (8) 

 

2. The Jacobian matrix at the    ( ̅    ̅) is given as: 

 (  )  

[
 
 
 
 

 

(       ̅)
       ̅(   )

  ̅

(       ̅) 

 
   ̅(   )

(       ̅)
      ̅(   )  

     ̅     ̅         ̅]
 
 
 
 

. 

Then, the characteristic equation of  (  ) is given by: 

(
   ̅(   )

(       ̅)
      ̅(   )   ) [     ( (  ))     ( (  ))] 

 The eigenvalues of the above equation can be written as follows 

     
   ̅(   )

(       ̅)
      ̅(   )  

  ( (  ))  
 

(       ̅)
    (       ̅),  

    ( (  ))    (       ̅)  
 (       ̅)

(       ̅)
 

   ̅ (   ̅  )

(       ̅) 
. 

Clearly,    is a locally asymptotical stable point if and only if the following conditions are 

satisfied: 

      ̅(   )  
   ̅(   )

(       ̅)
. 

      (       ̅) (       ̅), 

  (       ̅)  
   ̅ (   ̅  )

(       ̅) 
 

 (       ̅)

(       ̅)
. 

(9.1) 

(9.2) 

 

(9.3) 

3. The Jacobian matrix at the CEP    (        ) is given as: 

 

 (  )  [

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

]  

    

   (10) 
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where,    
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(        ) 
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    (   )

(        )
    (   );    

   
  ,    

   
 

    (   )  

(        ) 
,;    
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 . 

So, the characteristic equation of  (  ) can be written as: 

       
            (11) 

where 

    (   
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. 

Now, from the Routh-Hurwitz criteria,    is a LAS  point, under the following condition 

          and    .  

In the following theorem, adequate conditions for the global stability of the CEP which is 

given by    (        ) are identified by the Lyapunov method. 

Theorem 1. Assume that 

  (   )          (    )        (    )    (    )
    

}. 
(12) 

Then CEP is globally asymptotically stable in   
 . 

Proof:- Define       (         
 

  )    (         
 

  )     (
    

 
)
 

, where 

  ,    and    are positive constants to be specified and   (     ) is a positive definite 

function about CEP. Thus, 
   

  
 

  (    )

 

  

  
 

  (    )

 

  

  
   (    )

  

  
 

By choosing the constants        ,    
(    )

  
, and using model (1) with some algebraic 

manipulations, we get: 
   

  
   (   )          (    )        (    )(    )

   (    )(    )  

Then, 
   

  
   under condition (12). Hence,    is a Lyapunov function. Therefore, CEP is 

globally asymptotically stable in   
  if   ,   and   are controlled by condition (12). 

  

5. The Hopf bifurcation analysis  

     The Hopf bifurcation refers to the local birth or death of a periodic solution from 

equilibrium as a parameter crosses a critical value. In a differential equation, the Hopf 

bifurcation typically occurs when a complex conjugate pair of eigenvalues of the linearised 

flow at a fixed point becomes purely imaginary. Hopf bifurcation threshold and its conditions 

are clarified in the following theorem. 

 

Theorem 2:- Under the following assumptions: 

           (13.1) 

             
 (  )     (13.2) 

       (13.3) 
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      where Ai's are the coefficients of the characteristic equation given in equation (11) with 

     and the formula for    is shown in the following proof. Then, there exists a Hopf 

bifurcation for CEP at     . 

Proof:- The value of the bifurcation parameter can be found if we set   ( 
 )  ( 

 )  
  ( 

 )    in equation (11). This gives: 

   
    (              

 )    (             )          )

(       )   
    

 . 

Clearly,      if condition (13.3) holds. Now, at     , equation (11) can be written as 

 (    )( 
    )      

According to condition (13.1), the above equation has three roots, the negative root        

and two purely imaginary roots         √  . In a neighborhood of   , the roots have the 

following forms:               ( )     ( ). 

Clearly,   (     )        ( 
 )    indicates that the first condition for the Hopf 

bifurcation has been met at     . Now to confirm the transversality condition, we substitute 

  ( )     ( ) into equation (11) and then compute its derivative with respect to   , 

 (  ) (  )   (  ) (  )   , where the form of  (  )  (  )  (  ) and  (  ) are 

 ( )     
 ( )     ( )  ( )    ( )     

 ( )  
 ( )     ( )  ( )     ( )  (  )  
 ( )    

 ( )   
 ( )     

 ( )  ( )     
 ( )     

 ( )  
 ( )  

 ( )     ( )  ( )  
 ( )    

 ( )  ( )  

Now at     , substitution      and    √  , into equation (11), the following is 

obtained: 

 (  )      ( 
 ) 

 (  )     ( 
 )√  (  ) 

 (  )    
 (  )    

 (  )  ( 
 ) 

 (  )    
 (  )√  (  ) 

 

where 

   
 (  )   , 

  
 (  )     , 

  
 (  )           

 

 

Hence, condition (12) gives   

 (  ) (  )   (  ) (  )      ( 
 )             

 (  )     
That means the Hop bifurcation has occurred at      then the proof is completed. 

From Theorem 3, the stability condition of the stable limit cycle in   
  is presented using the 

coefficient of curvature of the limit cycle. For a detailed discussion, we refer to  [26].  

 

Theorem 3 The system (1) has a stable limit cycle in  (     )
  if the following condition is 

true: 

  

(           ) 
 

  (     )(   )

(           ) 
. (14) 

Proof:- By using transformations        ,        ,          the CEP 

equilibrium point shifted to (     )  and the system (1) becomes 
   

  
 

 (     )

(           )
   (     )(     )(   )  (     )   

   

  
 

  (     )(     )(   )

(           )
   (     )   (     )(     )(   ) 
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      (     )   (     )   (     )    (     )(     )

   (     )(     )  
where the nonlinear part of the above system is presented in the following matrix is 

  (
  

  

  

)  
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   (   )    

  (     )(     )(   )

(           )
  (   )    

              )

  
 

 

We derive the following characteristic quantities from the nonlinear part: 
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{
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{

    

      
 

    

      
  (

    

      
 

    

      
)}  

 

 
{

 

(           ) 
 

  (     )(   )

(           ) 
 

 (
  (     )(   )

(           ) 
)}, 

   
   

 

   (  (  )
(
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)}   , 

Thus, the coefficient of the curvature of the limit cycle is given by 

  
    {

   
    

 

 
      

    
  

   
      

    
 

 
}, 

  
    

 

 
{

 

(           ) 
 

  (     )(   )

(           ) 
  (

  (     )(   )

(           ) 
)}  

 

(           ) 
 

  (     )(   )

(           ) 
. 

Thus, condition (14) guarantees that system (1) has a stable limit cycle; the proof is 

completed. 

 

6. Numerical analysis 

     To validate our theoretical conclusions and get insight into the many possible dynamics of 

the system (1), we conduct a numerical simulation here using MATLAB 2019b program to 

create all figures, while the numerical solution to our system was found using the ode45 

solver. Our primary objective is to examine the dynamics of the depletion of dissolved 

oxygen for the phytoplankton-zooplankton interaction. For the specified variables: 

                                        
                                         
                       , 

 

 (15) 

and with different initial values, it is observed from Figure (2) that    (              ) is 

a globally asymptotically stable point.  
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Figure 2: Phase diagram of system (1) with the data set given by (15) with different initial 

values. 
 

     To examine the effect of varying one parameter at a time on the behavior of system (1), it 

has been numerically resolved for the data in (15). In light of this, Figure (3) investigates the 

effect of change in the phytoplankton's growth rate ( ), on the stability behaviour of system 

(1). The simulation shows when      , the system (1) has no CEP, and the solution settles 

down to DOEP,    (        ), in the  - axis. While for      , the solution converges 

asymptotically to CEP,    (              ). 

 
 

Figure 3: Dynamics of the system (1) (a) time series with      ; (b) phase portrait of (a); 

(c) time series with      ; (d) phase portrait of (c). 
 

     Further, Figure (4) investigates the effect of change in the replenishment rate of oxygen in 

the marine ( ) on the stability properties of the system (1). It shows for       , the solution 

settles down to CEP. While for       , the solution shows a periodic attractor behaviour. 
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Figure 4: Dynamics of system (1) (a) time series with s=0.9; (b) phase portrait of (a); (c) time 

series with s=0.45; (d) phase portrait of (c); (e) time series with s=0.44; (f) phase portrait of 

(e). 
 

     Now the effect of changing the concentration of dissolved oxygen that comes from several 

sources (  ) is explored in Figure (5). The Figure shows that the solution settles 

asymptotically to the    (              ), for        . Further, the solution approaches 

a periodic attractor for        . While for        , the solution faces an unstable limit 

cycle. 

 

 
Figure 5: Dynamics of system (1) (a) time series with    2; (b) phase portrait of (a); (c) 

time series with         ; (d) phase portrait of (c); (e) time series with         ; (f) 

phase portrait of (e). 

 

      Next, the influence of changing the amount of oxygen produced by phytoplankton ( ) is 

investigated in Figure (6). The simulation illustrates that for         the solution stabilizes 

at its CEP level, while for         the solution follows a periodic attractor. The latter result 

confirms the one obtained in Theorem (2) and Theorem (3), respectively, which establishes 

the existence of Hopf bifurcation at        and the stability of the obtained limit cycle. 
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Figure 6: Dynamics of system (1) (a) time series with d=0.01; (b) phase portrait of (a); (c) 

time series with d=0.77; (d) phase portrait of (c); (d) phase portrait of (c); (e) time series with 

d=0.78; (f) phase portrait of (e). 
 

     Finally, for varying the rest parameters given in (15), the solution approaches CEP in the 

interior of   
 . For example, Figure (7) shows different values of  , and the solution stabilizes 

at its CEP level. 

 

 
Figure 7: Dynamics of system (1) (a) time series with      ; (b) phase portrait of (a); (c) 

time series with       ; (d) phase portrait of (c). 
 

8. Discussions and conclusion 

     This paper modifies the dissolved oxygen-plankton model by considering that the 

zooplankton feeds on both available toxic and non-toxic phytoplankton. The idea is to figure 

out how this kind of interaction affects the dynamics of an aquatic environment. The system 

underwent theoretical and numerical analysis. The theoretical results detect three steady 

states; the dissolved oxygen equilibrium point DOEP, the zooplankton-free equilibrium point 

ZFEP, and CEP. The three steady states show stable or unstable behavior depending on 

specific conditions. The necessary conditions have been found to ensure the happening of a 

Hopf bifurcation around CEP. 
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     Nonetheless, the numerical simulation deduced that system (1) always sways about the 

CEP when the stability criteria are met. Further, by changing the replenishment rate of oxygen 

in the marine ( ), the solution faces extinction for both plankton species or the stability of all 

components. Moreover, the changing in the value of       and   leads to the system (1) 

showing limit cycle behaviour. Finally, the solution is stabilized at the CEP when the 

remaining parameters are changed. For future work, we suggest considering the impact of 

climate change on the oxygen-plankton dynamics in the ocean. 

 
References 

[1] V. Hull, L. Parrella, and M. Falcucci, "Modelling dissolved oxygen dynamics in coastal lagoons," 

Ecol. Model., vol. 211, no. 3–4, pp. 468–480, 2008. 

[2] A. K. Misra, "Modeling the depletion of dissolved oxygen in a lake due to submerged 

macrophytes," Nonlinear Anal. Model. Control, vol. 15, no. 2, pp. 185–198, 2010. 

[3] A. K. Misra, P. Chandra, and V. Raghavendra, "Modeling the depletion of dissolved oxygen in a 

lake due to algal bloom: Effect of time delay," Adv. Water Resour., vol. 34, no. 10, pp. 1232–

1238, 2011. 

[4] Y. Sekerci and S. Petrovskii, "Mathematical modelling of plankton–oxygen dynamics under the 

climate change," Bull. Math. Biol., vol. 77, no. 12, pp. 2325–2353, 2015. 

[5] K. Hancke and R. N. Glud, "Temperature effects on respiration and photosynthesis in three 

diatom-dominated benthic communities," Aquat. Microb. Ecol., vol. 37, no. 3, pp. 265–281, 

2004. 

[6] S. Mandal, S. Ray, and P. B. Ghosh, "Modeling nutrient (dissolved inorganic nitrogen) and 

plankton dynamics at Sagar island of Hooghly–Matla estuarine system, West Bengal, India," Nat. 

Resour. Model., vol. 25, no. 4, pp. 629–652, 2012. 

[7] A. Gökçe, "A mathematical study for chaotic dynamics of dissolved oxygen-phytoplankton 

interactions under environmental driving factors and time lag," Chaos, Solitons & Fractals, vol. 

151, p. 111268, 2021. 

[8] S. Mondal, G. Samanta, and M. De la Sen, "Dynamics of Oxygen-Plankton Model with Variable 

Zooplankton Search Rate in Deterministic and Fluctuating Environments," Mathematics, vol. 10, 

no. 10, p. 1641, 2022. 

[9] S. Jawad, D. Sultan, and M. Winter, "The dynamics of a modified Holling-Tanner prey-predator 

model with wind effect," Int. J. Nonlinear Anal. Appl., vol. 12, no. Special Issue, pp. 2203–2210, 

2021. 

[10] M. Al Nuaimi and S. Jawad, "Modelling and stability analysis of the competitional ecological 

model with harvesting," Commun. Math. Biol. Neurosci., vol. 2022, p. Article-ID, 2022. 

[11] S. K. Hassan and S. R. Jawad, "The Effect of Mutual Interaction and Harvesting on Food Chain 

Model," Iraqi J. Sci., pp. 2641–2649, 2022. 

[12] S. Jawad, M. Winter, Z.-A. S. A. Rahman, Y. I. A. Al-Yasir, and A. Zeb, "Dynamical Behavior of 

a Cancer Growth Model with Chemotherapy and Boosting of the Immune System," Mathematics, 

vol. 11, no. 2, p. 406, 2023. 

[13] S. Dawud and S. Jawad, "Stability analysis of a competitive ecological system in a polluted 

environment," Commun. Math. Biol. Neurosci., vol. 2022, p. Article-ID, 2022. 

[14] H. H. Hameed and H. M. Al-Saedi, "Three-Dimensional Nonlinear Integral Operator with the 

Modelling of Majorant Function," Baghdad Sci. J., vol. 18, no. 2, p. 296, 2021. 

[15] A. M. Kareem and S. N. Al-Azzawi, "A stochastic differential equations model for the spread of 

coronavirus COVID-19): the case of Iraq," Iraqi J. Sci., pp. 1025–1035, 2021. 

[16] Sajan, S. K. Sasmal, and B. Dubey, "A phytoplankton–zooplankton–fish model with chaos 

control: In the presence of fear effect and an additional food," Chaos An Interdiscip. J. Nonlinear 

Sci., vol. 32, no. 1, p. 13114, 2022. 

[17] X.-Y. Meng and L. Xiao, "Stability and Bifurcation for a Delayed Diffusive Two-Zooplankton 

One-Phytoplankton Model with Two Different Functions," Complexity, vol. 2021, 2021. 

[18] T. G. Hallam, C. E. Clark, and G. S. Jordan, "Effects of toxicants on populations: a qualitative 

approach II. First order kinetics," J. Math. Biol., vol. 18, no. 1, pp. 25–37, 1983. 



Ali and Jawad                                          Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2736-2748 

 
 

7272 

[19] S. Chakraborty, S. Chatterjee, E. Venturino, and J. Chattopadhyay, "Recurring plankton bloom 

dynamics modeled via toxin-producing phytoplankton," J. Biol. Phys., vol. 33, no. 4, pp. 271–

290, 2007. 

[20] J. Dhar and R. S. Baghel, "Role of dissolved oxygen on the plankton dynamics in spatio-temporal 

domain," model. Earth Syst. Environ., vol. 2, no. 1, pp. 1–15, 2016. 

[21] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential equations, dynamical systems, and an 

introduction to chaos. Academic press, 2012. 

[22] L. Perko, Differential equations and dynamical systems, vol. 7. Springer Science & Business 

Media, 2013. 

[23] J. P. LaSalle, "Stability theory and invariance principles," in Dynamical systems, Elsevier, 1976, 

pp. 211–222. 

[24] R. M. May, Stability and complexity in model ecosystems. Princeton university press, 2019. 

[25] S. R. Jawad and M. Al Nuaimi, "Persistence and bifurcation analysis among four species 

interactions with the influence of competition, predation and harvesting," Iraqi J. Sci., pp. 1369–

1390, 2023. 

[26] D. Mukherjee, "Study of fear mechanism in predator-prey system in the presence of competitor 

for the prey," Ecol. Genet. Genomics, vol. 15, p. 100052, 2020. 

 


