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Abstract  

     Let M be a semiprime 2-torsion free inverse semiring, and let α be an 

endomorphism of M. Under some conditions, we prove a Jordan α-centralizer of M 

is a α-centralizer of M, also we prove  if R: M→ M be an additive mapping such that 

R(r3) + α(r)R(r)α(r)' = 0 holds for all r ∈ M, where R is a centralizer, and α is a 

surjective endomorphism of M. 

 

Keywords: Inverse semiring, centralizer of inverse semiring, Jordan centralizer, α-

centralizer, Jordan α-centralizer. 

 

 تمركزات و تمركزات جوردان لاشباه الحلقات المعكوسة
 

الرحمن حميد مجيدعلي جعفر عباس *، عبد   
 قسم الرياضيات، كليه العلوم، جامعه بغداد، بغداد، العراق 

 ة الخلاص
  ، طليقه الالتواء   2شبه حلقه معكوسه  شبه اوليه  α    هو تشاكل على M    نثبت ان   في ضل بعض الظروف،    
ل  α -تمركزات  لتكنM  و ل    تكون   Mجوردان  جوردان  نبرهن  Mتمركزات  تكون    R: M→ M  اذاايظا    , 

 بحيث  تطبيق جمعي
0 = )'r(α)r(R)r(α + )3R(r      لكلM ∈ rتكون   . في هذه الحالة  R   ،عندما  تمركز  α   تكون تشاكل شامل

    . M على 
 

1. Introduction 

     The investigation of the semiring goes back to Vandiver [1]. A non-empty set with two 

binary operation (+) and (•) is called semiring if and only if the following conditions hold: 

i)    (M, +) is commutative semigroup. 

ii)   (M, •) is semigroup. 

iii)  a • (r + s) = a • r + a • s, and (r + s) • a = r • a + s • a         

       for all a, r, s ∈ M.  

      

      A semiring (M, +, •) is said to be commutative if and only if r • s = s • r  holds for all r, s 

∈ M,  and it’s called additively inverse semiring,  if for every r ∈ M there exists a unique 

element r´ ∈ M such that r + r´ + r = r and r´ + r + r´ = r,´ [2]. The semiring M is known as a 

semiring with 0, if there exists an element 0 ∈ M such that r + 0 = r for all r ∈ M, and is 

known as a semiring with unity, if there exists an element 1 ∈ M such that r •  1 = 1 •  r = r for 
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all r ∈ M, [3]. A semiring  M  is  additively  left  cancellative  if for all r, s, m ∈  M, such that  

r + s  =  r + m, then s = m,  and is  additively  right  cancellative  if s + r =  m + r, then s = m, 

[3].    

      

     In this article, M will represent additive inverse semiring that satisfies the condition, 

for all r ∈ M, 𝑟 + �́� is located in the center Z (M) of M.  

 

     A semiring M is called a prime semiring if for any 𝑟, 𝑠 ∈ 𝑀, if 𝑟𝑀𝑠 = 0 implies either 𝑟 =
0 𝑜𝑟 𝑠 = 0,  M is semiprime if r M r = 0, implies that r = 0, and M is m-torsion free if mr = 0, 

r ∈ M implies r = 0. A commutator [., .] in an inverse semirings defines as [r, s] = rs+ rs´ and, 

r o s= rs+ rs, [4]. 

 

      An inverse semiring M is said to be has a commutator which is not left (right) zero divisor 

if there exists r, s ∈M such that [r, s] t = 0, (t [r, s] = 0), t ∈ M, implies that t = 0, [5]. We call 

a map 𝑑: 𝑀 → 𝑀 a derivation, when 𝑑(𝑟𝑠) = 𝑑(𝑟)𝑠 + 𝑟𝑑(𝑠) holds  for all 𝑟, 𝑠 ∈ 𝑀, and we 

call it a Jordan derivation when 𝑑(𝑟2) = 𝑑(𝑟)𝑟 + 𝑟𝑑(𝑟) holds  for all 𝑟 ∈ 𝑀 . An additive 

mapping R : M → 𝑀 is called a left (right) centralizer in case R(rs) = R(r)s (R(rs) = r R(s)) 

holds for all r, s ∈ M. We follow Zalar [6] and refer to R as a centralizer when it is both a left 

and a right centralizer. An additive mapping R: M → 𝑀  is called a left (right) Jordan 

centralizer in case R(r2) = R(r)r, (R(r2) = rR(r)). 

 

     In [7] Albas introduced the α-centralizer notation and the Jordan α-centralizer  notation, 

which are a generalization of Jordan centralizer and centralizer, and tested under specific  

conditions  on a 2-torsion free semiprime ring, where every Jordan α-centralizer is α-

centralizer, and where α is a surjective homomorphism. An inverse semirings considered in 

different directions by numerous authors (see for example [8-16]). In this work our aim is to 

consider the results of Majeed and Meften [17, 18] in the inverse semiring.   

      

2. α-Centralizer of inverse semiring 

     In this section we present the definition of left (right) α-centralizer, left (right) Jordan α-

centralizer of a semiring M, and some lemmas that will be used later. 

 

Definition 2.1 

      A left (right) α-centralizer of a semiring M is an additive mapping R: M→ M  which 

satisfies R(rs) + R(r)α(s)' = 0, (R(rs) + α(r)R(s)' = 0)  for all r, s ∈ M, a α-centralizer of a ring 

M is both left and right α-entralizer, where α is an additive mapping on M. 

  

Definition 2.2 

      A left (right) Jordan α-centralizer of a semiring M is an additive mapping R: M→M which 

satisfies R(r2) + R(r)α(r)' = 0 (R(r2) + α(r) R(r)'  = 0)  for all r ∈ M. A Jordan α-centralizer of a 

ring M is both left and right Jordan α-centralizer, where α is an additive mapping on M. 

 

Clearly, the left α-centralizer of M is the left Jordan α-centralizer and similarly, the α -

centralizer for M is the Jordan α-centralizer for M.  

 

Lemma 2.3 [10, 11] 

     Let M be an inverse semiring, then for all 𝑟, 𝑠 𝜖 𝑀, 𝑟 + 𝑠 = 0, and 𝑟 = 𝑠′. 
Note that in general 𝑟 + 𝑟 ′ ≠ 0, 𝑟 + 𝑟 ′ = 0, if and only if there exists some 𝑠 𝜖 𝑀 with 𝑟 +
𝑠 = 0.  
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Lemma 2.4 [10] 

For all 𝑟, 𝑠 𝜖 𝑀, the following are holds: 

i. (r + s)'= r' + s'. 

ii. (rs)' = r's = rs'. 

iii. r'' = r. 

iv. r's' = (r's)' = (rs)'' = rs. 

 

Lemma 2.5 [12] 

For all 𝑟, 𝑠, 𝑡 𝜖 𝑀, the following are holds: 

i.[r , r] = 0. 

ii.[r + s , t] = [r , t] + [r , s]. 

iii.[rs , t] = r[s , t] + [r , t]s. 

iv.[r , st] = s[r , t] + [r , s]t. 

 

Lemma 2.6 [10] 

      Let M be a semiprime, if 𝑟, 𝑠 𝜖 𝑀  such that 𝑟𝑥𝑠 = 0 for all 𝑥 ∈ 𝑀. Then 𝑟𝑠 = 𝑠𝑟 = 0. 

 

Recall that an additive map is an additive in each argument.  

 

Lemma 2.7 [17] 

     Let M be a semiprime and F, G: M × M → M be additive mappings. If 𝐹(𝑟, 𝑠)𝑤𝐺(𝑟, 𝑠) =
0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑠, 𝑤 𝜖𝑀,  then 𝐹(𝑟, 𝑠)𝑤𝐺(𝑡, 𝑞) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑠, 𝑤, 𝑡, 𝑞 𝜖𝑀. 

 

3. Main Results 

       The following theorem is the  generalization of the theorem in [17].  

 

Theorem 3.1  

     Let M be 2-torsion free semiring, following each left (right) Jordan 𝛼 − centralizer. If one 

of the following statements about R is true, then R is a left (right) 𝛼 − centralizer:  

 

i M is a semiprime semiring has a commutator which is not a zero divisor. 

ii M is a non commutative prime semiring. 

iii M is a commutative semiprime semiring. 

Where α is a surjective endomorphism of M. 

Proof : 

               𝑅(𝑟2) + 𝑅(𝑟)𝛼(𝑟)′ = 0                                       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈ 𝑀                                   (1) 

If we replace  𝑟 𝑏𝑦 𝑟 + 𝑠, we get 

           𝑅((𝑟 + 𝑠)2) + 𝑅(𝑟 + 𝑠)𝛼(𝑟 + 𝑠)′ = 0   
By Definition 2.1, we have some terms became = 0 

        𝑅(𝑟2) + 𝑅(𝑟𝑠 + 𝑠𝑟) + 𝑅(𝑠2) + 𝑅(𝑟)𝛼(𝑟)′ + 𝑅(𝑟)α(𝑠)′ + 𝑅(𝑠)α(𝑟)′ +  𝑅(𝑠)α(𝑠)′ = 0 

           𝑅(𝑟𝑠 + 𝑠𝑟) + 𝑅(𝑟)α(𝑠)′ + 𝑅(𝑠)α(𝑟)′ = 0                                                                   (2) 

           𝑅(𝑟𝑠) + 𝑅(𝑟)α(𝑠)′ + 𝑅(𝑠𝑟) + 𝑅(𝑠)α(𝑟)′ = 0       

                                𝐹(𝑟, 𝑠) + 𝐹(𝑠, 𝑟) = 0 

                               𝐹(𝑟, 𝑠)  =  𝐹 (𝑠, 𝑟)′. 
Where 𝐹(𝑟, 𝑠) =  𝑅(𝑟𝑠) + 𝑅(𝑟)α′(𝑠) and 𝐹(𝑠, 𝑟) =  𝑅(𝑠𝑟) + 𝑅(𝑠)α(𝑟)′ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑠 ∈ 𝑀. 
By replacing s with 𝑟𝑠 + 𝑠𝑟 and using (2), we arrive at 
 

 𝑅(𝑟(𝑟𝑠 + 𝑠𝑟) + (𝑟𝑠 + 𝑠𝑟)𝑟) + 𝑅(𝑟)α(𝑟𝑠 + 𝑠𝑟)′ + 𝑅(𝑟𝑠 + 𝑠𝑟)α(𝑟)′ = 0 

 𝑅(𝑟(𝑟𝑠 + 𝑠𝑟) + (𝑟𝑠 + 𝑠𝑟)𝑟) + 𝑅(𝑟)α(𝑟𝑠)′ + 𝑅(𝑟)(𝑠𝑟)′ + 𝑅(𝑟)α(𝑠𝑟)′ + 𝑅(𝑠)α(𝑟2)′ = 0(3) 
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In other way using equation (2), we have 

𝑅(𝑟(𝑟𝑠 + 𝑠𝑟) + (𝑟𝑠 + 𝑠𝑟)𝑟) +  𝑅(𝑟)α(𝑟𝑠)′ +  𝑅(𝑠)α(𝑟2)′ + 2𝑅(𝑟𝑠𝑟)′ = 0                        (4)                                     

 Comparing (3) and (4), we obtain 

               𝑅(𝑟𝑠𝑟) + 𝑅(𝑟)′α(𝑠𝑟)  = 0                                    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 , 𝑠 ∈  𝑀                           (5) 

If we linearize (5), we get 

              R(rsz + zsr) + R(r)'α(sz) + R(z)'α(sr) = 0             for all r , s ∈ M                              (6) 

Now we shall compute K = R(rszsr + srzrs) for all r, s, z ∈ M in two  different ways. Using (5) 

we have 

                                     K  R)r)α(szsr) + R)s)α)rzrs)                                                                 (7) 

using (6), we have 

                                    K  R(rs)α(zsr) + R(sr)α(zrs)                                                                  (8) 

comparing (7) and (8)  

             R)r)α(szsr) + R(s)α(rzrs) = R(rs) α(zsr) + R(sr) α(zrs) 

            R(r)α(s)'α(zsr) + R(rs)α (zsr)+ R(s)α(r)'α(zrs)+ R(sr) α(zrs) = 0 

since  F(r, s) is a additive mapping, we arrive at 

                                  F(r, s)α(zsr) + F(s, r)α(zrs) = 0 or all r, s, z ∈ M                                   (9) 

Since F(r, s) = F(s, r)' for all r, s ∈ M, using this fact and equality (9), we obtain 

                                 F(r, s)α(z)[α(r), α(s)] = 0          for all r, s, z ∈ M                                 (10) 

Using Lemma (2.7), we have 

                                F(r, s)α(z)[α(u), α(v) ] = 0          for all r, s , z, u, v ∈ M                        (11) 

Using Lemma (2.6), we have   

                               F(r, s) [α(u), α(v) ] = 0                for all r, s , u, v ∈ M                            (12) 

(i) Where M has a commutator which is not a zero divisor using (12) and α is onto, we 

have 

                              𝐹(𝑟, 𝑠) =  0    for all  r, s ∈ M 

(ii) If M is a non commutative prime semiring using (11) and α  is onto, we have 

                              𝐹(𝑟, 𝑠) =  0                                   𝑓𝑜𝑟 𝑎𝑙𝑙  r, s ∈ M 

(iii)  If M is a commutative semiprime semiring, now we shall  compute J = R(rszsr) in two 

different ways, using (5)  

we have 

                  J = R(r)α(szsr)                                                                                                     (13) 

                 J = R(rs)α(zsr)                                                                                                      (14) 

Comparing (13) and (14), we arrive at 

                    R(r)α(szsr)' + R(rs)α(zsr) =0  

                   (R(rs) + R(r)α'(s) ) α(z)α(sr) = 0 

                   F(r, s)α(z)α(sr) = 0                                   for all r, s , z ∈ M                               (15) 

Let ψ (r, s) = α(r)α(s), it's clear that ψ  is a additive mapping, therefore 

                 F(r, s) α(z) ψ (r, s) = 0                                  for all r, s, z ∈ M 

Using Lemma (2.7), we have 

                F(r, s) α(z) ψ (u, v) = 0                                   for all r, s , z, u, v ∈ M 

Implies that 

                F(r, s) α(z) α(uv) = 0                                     for all r, s , z, u, v ∈ M                      (16) 

By replacing α(v) with F(r, s)α(z), α is onto, and M  is a semiprime semiring, we have 

𝐹(𝑟, 𝑠) =  0    for all  r, s ∈ M 

That is mean 

                                R(rs) + R(r)α'(s)=0. 

By similar way we can prove 

                                R(rs) + α'(s)R(r) =0. 
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Corollary 3.2 

    Let M be a 2-torsion free prime semiring, then every left (right) Jordan α-centralizer R is a 

left (right) α-centralizer. 

 

     In the following, we generalized the second proposition in [18], as following to α-

centralizers for semiprime semiring, so to prove this result, we need the following lemmas 

 

Lemma 3.3 

     Let M be a semiprime, 𝑓 𝑖𝑠 𝑎 (𝛼, 𝛼) − 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀, and a ∈ M some fixed element, 

where α is a surjective endomorphism of M 

i.If 𝑓(𝑟)𝑓(𝑠) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑠 ∈ 𝑀  then  𝑓 = 0. 

ii.If ar + ra' ∈ Z(M)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑠 ∈ 𝑀  then a ∈ Z. 

Proof:  

i.𝑓(𝑟)𝛼(𝑠)𝑓(𝑠) = 𝑓(𝑟)𝑓(𝑠𝑟) + 𝑓(𝑟)𝑓(𝑠)𝛼(𝑟)′ = 0                          𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑠 ∈ 𝑀  

Sinceα is  surjective, and M  is a semiprime, we have f =  0 

ii. Let 𝑓(𝑟) = 𝑎𝛼(𝑟) + 𝛼(𝑟)𝑎′d(r)            

It is clear that f is a (α,  α) derivations, since f(r) ∈ Z (M) for all r ∈ M, we get f(s)α(r) = 

α(r)f(s) and also f(sz)α(r)  = α(r)f(sz). 

Hence 

            f(s)α)zr) + α(s)f(z)α(r) = f(s)α(r)α(z) + f(z)α(r)α(s) 

           f(s)α)z)α)r) + f(z)α(s)α(r) = f(s)α(r)α(z) + f(z)α(r)α(s) 

Since M is semiring, we get 

                                f(s)[α)z), α)r)]= f(z)[α(r), α(s)] 

Since α is surjective take α(z) = a. It is clear that f(a) = 0, so we obtain   

                               f(s)[a, α (r)] = f(s)f(a)=0 

by (i) we get f = 0 and hence aα(r) + α(r)a' =0, for all r ∈M.  

Since α is a surjective, therefore a ∈ Z (M). 

 

Lemma 3.4 

     Let M be a semiprime semiring and r ∈ M some fixed element. If 𝑅(𝑥)  =  𝑟α(𝑥)  +  α(𝑥), 

and 𝑅(𝑥 𝑜 𝑠)  =  𝑅(𝑥) 𝑜 𝛼 (𝑠) for all 𝑥 , 𝑠 ∈  𝑀 . Then 𝑟 ∈  𝑍(𝑀),  where α is a surjective 

endomorphism of  M. 

Proof: 

By the assumption  

                 𝑅(𝑥𝑠 +  𝑠𝑥)  +  𝑅(𝑥)α(𝑠)′ +  α(𝑠)′𝑅(𝑥) = 0                       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 , 𝑠 ∈  𝑀  

Its clear that R is an additive map 

𝑅(𝑥𝑠) + 𝑅(𝑠𝑥)  +  𝑅(𝑥)α(𝑠)′ +  α(𝑠)′𝑅(𝑥) = 0                   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 , 𝑠 ∈  𝑀 

 On the other hand, we have 

 𝑅(𝑥𝑠) + 𝑅(𝑠𝑥)  =  𝑟𝛼(𝑥𝑠) + 𝛼(𝑥𝑠)𝑟 + 𝑟𝛼(𝑠𝑥) + 𝛼(𝑠𝑥)𝑟 

= 𝑟𝛼(𝑥)𝛼(𝑠) + 𝛼(𝑥)𝛼(𝑠)𝑟 + 𝑟𝛼(𝑠)𝛼(𝑥) + 𝛼(𝑠)𝛼(𝑥)𝑟 

 𝑅(𝑥)𝛼(𝑠)′ + 𝛼(𝑠)𝑅(𝑥)′ + 𝑟𝛼(𝑥)𝛼(𝑠) + 𝛼(𝑥)𝑟𝛼(𝑠) + 𝛼(𝑠)𝑟𝛼(𝑥) + 𝛼(𝑠)𝛼(𝑥)𝑟 = 0 

 (𝑟 + 𝑟′)𝛼(𝑥)𝛼(𝑠) + 𝛼(𝑠)𝛼(𝑥)(𝑟 + 𝑟′) + 𝛼(𝑥)𝛼(𝑠) + 𝑟𝛼(𝑠)𝛼(𝑥) + 𝛼(𝑥)𝑟′𝛼(𝑠) +

𝛼(𝑠) 𝑟′ 𝛼(𝑥)  =  0 

Since 𝑟 +  𝑟′ ∈  𝑍(𝑅) 

𝛼(𝑥)(𝑟′ + 𝑟 + 𝑟′)𝛼 (𝑠) + 𝛼(𝑠)(𝑟′ + 𝑟 + 𝑟′)𝛼 (𝑥) + 𝛼 (𝑥)𝛼 (𝑠)𝑟 + 𝑟𝛼(𝑠)𝛼(𝑥) = 0.              

  𝛼(𝑥)𝑟′𝛼 (𝑠) + 𝛼(𝑠)𝑟′𝛼(𝑥) + 𝛼(𝑥)𝛼(𝑠)𝑟 + 𝑟𝛼(𝑠)𝛼(𝑥) =  0 
           𝛼(𝑥)′ (𝑟 𝛼(𝑠)  +  𝛼(𝑠) 𝑟′)  + ( 𝛼 (𝑠)𝑟′ + 𝑟 𝛼 (𝑠)) 𝛼(𝑥) =  0 

Since α is surjective  

                                        𝑟𝛼(𝑠) + 𝛼(𝑠)𝑟′ ∈  𝑍(𝑀) 
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The second part of Lemma (3.3) now gives we us 𝑟 ∈  𝑍(𝑀). 
Lemma 3.5 

     Let M be a semiprime semiring, 𝑅: 𝑀 →  𝑀 an additive map, which satisfies  𝑅(𝑥𝑜𝑠)  =
 𝑅(𝑥)𝑜𝛼(𝑠) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 , 𝑠 ∈  𝑀,  then 𝑅(𝑟) ∈ 𝑍(𝑀) for all 𝑟 ∈ 𝑍 (𝑀), where α is a surjective 

endomorphism of M. 

Proof:  

Take 𝑟 ∈  𝑍(𝑀) and denote  𝑎 =  𝑅(𝑟). 
            2𝑅(𝑟𝑥) = 𝑅(𝑟𝑥 + 𝑥𝑟) = 𝑅(𝑟)𝛼(𝑥) + 𝛼(𝑥)𝑅(𝑟) = 𝑎𝛼(𝑥) + 𝛼(𝑥)𝑎       

Let  

                            𝑆(𝑥)  =  2𝑅(𝑐𝑥)  

is satisfies  

                         𝑆(𝑥𝑜𝑠)  =  2𝑅(𝑟(𝑥𝑠 +  𝑠𝑥)   
 =  2𝑅(𝑟𝑥𝑠 +  𝑠𝑟𝑥) 

                         =  2𝑅(𝑟𝑥)𝛼(𝑠) +  2𝛼(𝑠)𝑅(𝑟𝑥) 

                         =  𝑆(𝑥)𝛼(𝑠)  +  𝛼(𝑠)𝑆(𝑥) 
                         =  𝑆(𝑥) 𝑜 𝛼 (𝑠) 
 

            𝑆(𝑥𝑜𝑠)  =  2𝑅(𝑟 (𝑥𝑠 +  𝑠𝑥)  
                          =  2𝑅(𝑥(𝑟𝑠) +  (𝑟𝑠)𝑥) 

                          =  2𝛼(𝑥)𝑅((𝑟𝑠)  + 2𝑅(𝑟𝑠)𝛼(𝑥) 
                          =  𝛼(𝑥)𝑆(𝑠)  +  𝑆(𝑠)𝛼(𝑥) 
                          =  𝛼(𝑥)𝑜𝑆(𝑠). 
Therfore            

            𝑆(𝑥𝑜𝑠)  =  𝑆(𝑥)𝑜𝛼(𝑠)  =  𝛼(𝑥)𝑜𝑆(𝑠)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 , 𝑠 ∈  𝑀 
By Lemma (3.4), we have 𝑎 = 𝑅(𝑟)  ∈  𝑍(𝑀). 
  

Theorem 3.6 

     Let M be 2-torsion free and 𝑅: 𝑀 →  𝑀 be an additive map, which satisfies 𝑅(𝑥𝑜𝑠)  =
 𝑅(𝑥)𝑜𝛼(𝑠)  = 𝛼(𝑥)𝑜𝑅(𝑠)  for all 𝑥, 𝑠 ∈  𝑀 , then R is α-centralizer of M, if one of the 

following statements hold:  

(i) M is a semiprime  semiring has a commutator which is not zero divisor.  

(ii)  M is a non-commutative prime semiring. 

(ii) M is a commutative semiprime semiring. 

Where α is a surjective endomorphism of M, and α(Z(R)) = Z(R). 

Proof:  

𝑅(𝑥𝑠 + 𝑠𝑥) = 𝑅(𝑥)𝛼(𝑠) +  𝛼(𝑠)𝑅(𝑥). 
𝑅(𝑥𝑠 +  𝑠𝑥) =  𝛼(𝑥)𝑅(𝑠) +  𝑅(𝑠)𝛼(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑠 ∈  𝑍(𝑀). 

If we replace s by xs + sx, we get 

               𝑅(𝑥)𝛼(𝑥𝑠 + 𝑠𝑥) +  𝛼(𝑥𝑠 + 𝑠𝑥 )𝑅(𝑥) 

           =  𝛼(𝑥) 𝑅(𝑥𝑠 +  𝑠𝑥) + 𝑅(𝑥𝑠 +  𝑠𝑥)𝛼(𝑥) 
           =  𝛼(𝑥)𝑅(𝑥)𝛼(𝑠) + 𝛼(𝑥)𝛼(𝑠)𝑅(𝑥) +  𝑅(𝑥)𝛼(𝑠)𝛼(𝑥) +  𝛼(𝑠)𝑅(𝑥)𝛼(𝑥) 
           = 𝑅(𝑥)𝛼(𝑥)𝛼(𝑠) +  𝑅(𝑥)𝛼(𝑠)𝛼(𝑥) + 𝛼(𝑥)𝛼(𝑠)𝑅(𝑥) +  𝛼(𝑠)𝛼(𝑥)𝑅(𝑥). 
Comparing the two above equations, we get 

(𝛼′(𝑥)𝑅(𝑥) + 𝑅(𝑥)𝛼(𝑥))𝛼(𝑠) = 𝛼(𝑠)(𝑅(𝑥)𝛼′(𝑥) +  𝛼(𝑥)𝑅(𝑥)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑠 ∈  𝑀. 

Now it follows that  

   [𝑅(𝑥), 𝛼(𝑥)]𝛼(𝑠) =  𝛼(𝑠)[𝑅(𝑥), 𝛼(𝑥)]  ℎ𝑜𝑙𝑑𝑠    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑠 ∈  𝑀. 

 

But α is surjective, then we get  

                                               [𝑅(𝑥), 𝛼(𝑥)] ∈  𝑍(𝑀). 
The next goal is to show that [𝑅(𝑥), 𝛼(𝑥)] =  0 holds                   for all x ∈ M. 
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Take any r ∈ Z(M). 

 

                                   2𝑅(𝑟𝑥) =  𝑅(𝑟𝑥 +  𝑥𝑟) 

                                                =  𝑅(𝑟)𝛼(𝑥) +  𝛼(𝑥)𝑅(𝑟) 

                                                =  2𝑅(𝑟)𝛼(𝑥).          
                                  2𝑅(𝑟𝑥) =  𝑅(𝑥𝑟 +  𝑟𝑥) 

                                                =  𝑅(𝑥)𝛼(𝑟) +  𝛼(𝑟)𝑅(𝑥) 

                                                =  2𝑅(𝑥) 𝛼(𝑟).          
 Using Lemma 3.5, we get 

                                    𝑅(𝑟𝑥) = 𝑅(𝑥)𝛼(𝑟) = 𝑅(𝑟)𝛼(𝑥)                 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑀. 
                            𝑅(𝑥)𝛼(𝑟)  +  𝑅(𝑟) ′𝛼(𝑥) = 0 
[𝑅(𝑥), 𝛼 (𝑥)]𝛼(𝑟) = 𝑅(𝑥)𝛼(𝑥) 𝛼(𝑟) + 𝛼(𝑥)𝑅(𝑥)′ 𝛼(𝑟)  

               =  𝑅(𝑥)𝛼(𝑟) 𝛼(𝑥) + 𝛼(𝑥)𝑅(𝑟)′𝛼(𝑥) 
                      = (𝑅(𝑥)𝛼(𝑟)  +  𝑅(𝑟)′ 𝛼(𝑥)) 𝛼(𝑥) = 0. 

Since M is semiprime semiring, 𝛼 (𝑍(𝑀))  =  𝑍(𝑀) , and [𝑅(𝑥), 𝛼(𝑥)]  itself is central 

element, we get 

                 [𝑅(𝑥), 𝛼(𝑥)]  =  0 ℎ𝑜𝑙𝑑𝑠                                                  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥  ∈  𝑀. 
            2𝑅(𝑥2)  =  𝑅(𝑥𝑥 + 𝑥𝑥)  =  𝑅(𝑥)𝛼(𝑥) + 𝛼(𝑥)𝑅(𝑥)  
                              =  2𝑅(𝑥)𝛼(𝑥)  
                              = 2𝛼(𝑥)𝑅(𝑥)                                                           𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥  ∈  𝑀. 
By Theorem 3.1, we get our result. 

 

Corollary 3.7 

      Let M be 2-torsion free prime semiring and R: M → M an additive mapping which 

satisfies R(x o s) = R(x) o α(s) = α(x) o R(s) for all x, s ∈ M, then R is a α-centralizer of M, 

where α is a surjective endomorphism of M, and α (Z (M)) = Z (M). 

 

If M is prime ring, we get the following corollary: 

 

Corollary 3.8 

     Let M be 2-torsion free prime  semiring, then every left (right) Jordan α-centralizer is a left 

(right) α-centralizer, where α is a surjective endomorphism of M. 

 

Theorem 3.9 

     Let M be a 2-torsion free semiprime with identity, and let R: M→M be an additive 

mapping. Suppose that 𝑅(𝑟3) + 𝛼(𝑟)𝑅(𝑟)𝛼(𝑟)′ = 0 holds for all r ∈ M. In this case, R is a 

𝛼 − centralizer, where α is a surjective endomorphism of M. 

Proof:  

Replacing r by r + 1   in the relation, where 1 is the identity element, we obtains  

 𝑅((𝑟 + 1)3) + α(𝑟 + 1)𝑅(𝑟 + 1)α(𝑟 + 1)′ = 0 

𝑅(𝑟3) +  3𝑅(𝑟2) +  3𝑅(𝑟) + 𝑅(1) + 𝛼(𝑟)𝑅(𝑟)𝛼(𝑟)′ + 𝛼(𝑟)𝑅(𝑟)′ + 𝛼(𝑟)𝑅(1)𝛼(𝑟)′  

+ 𝛼(𝑟)𝑅(1)′ + 𝑅(𝑟)𝛼(𝑟)′ + 𝑅(𝑟)′ + 𝑅(1)𝛼(𝑟)′ + 𝑅(1)′ = 0 
Using the assumption, we get  

         3𝑅(𝑟2) + 2𝑅(𝑟) + 𝑅(1) + 𝛼(𝑟)𝑅(𝑟)′ + 𝛼(𝑟)𝑅(1)𝛼(𝑟)′ + 𝛼(𝑟)𝑅(1)′ 
                                             𝑅(𝑟)𝛼(𝑟)′ + 𝑅(1)𝛼(𝑟)′ + 𝑅(1)′ = 0.                         
 Putting r' for r in the relation above                                                                                                             

 3𝑅(𝑟2) + 2𝑅(𝑟)′ + 𝑅(1)𝛼(𝑟)𝑅(𝑟)′ + 𝛼(𝑟)𝑅(1)𝛼(𝑟) + 𝛼(𝑟)𝑅(1) + 𝑅(𝑟)𝛼(𝑟)′ +
𝑅(1)𝛼(𝑟) + 𝑅(1)′ = 0.             
Comparing the two above relations, we obtain  

  6𝑅(𝑟2) + 2𝛼(𝑟)𝑅(𝑟)′ + 2𝛼(𝑟)𝑅(1)𝛼(𝑟)′ + 2𝑅(𝑟)𝛼(𝑟)′ = 0       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈ 𝑀,             (17) 
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and 

        2𝑅(𝑟) + 𝛼(𝑟)𝑅(1)′ + 𝑅(1)𝛼(𝑟)′ = 0                                    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈ 𝑀.                   (18) 

We want to prove that R(1) ∈ Z(M). According to Eq. (18) one can replace 2R(r) on the right 

side of Eq. (17) by α(r)R(1) + R(1)α(r)  and 6R(r2) on the left side by 3R(1)α(r2) + 3α(r2)R(1) 

which gives after some calculation 

 6𝑅(𝑟2) = 𝛼(𝑟)( 𝛼(𝑟)𝑅(1) + 𝑅(1)𝛼(𝑟) ) + 2𝛼(𝑟)𝑅(1)𝛼(𝑟) + (𝛼(𝑟)𝑅(1) +
𝑅(1)𝛼(𝑟))𝛼( 𝑟) 

              = 𝛼(𝑟2) 𝑅(1)  +  𝛼(𝑟)𝑅(1)𝛼(𝑟) +  2𝛼(𝑟)𝑅(1)𝛼(𝑟) + 𝛼(𝑟)𝑅(1)𝛼(𝑟) +
 𝑅(1) 𝛼(𝑟2)  
              =  𝛼(𝑟2)𝑅(1) +  4𝛼(𝑟)𝑅(1)𝛼(𝑟) +  𝑅(1)𝛼(𝑟2).  
On the other hand from Eq. (17) and Eq. (18), we obtain 

        6𝑅(𝑟2)  =  3𝛼(𝑟2) 𝑅(1)  +  3𝑅(1)𝛼(𝑟2)   
3𝛼(𝑟2)𝑅(1)  +  𝛼(𝑟2) 𝑅(1)′ + 3𝑅(1)𝛼(𝑟2) + 𝑅(1)′ 𝛼(𝑟2) + 4𝛼(𝑟)𝑅(1)𝛼(𝑟)′ = 0. 

After some calculation using the property of semiring, we get 

 𝛼(𝑟2)𝑅(1) + 𝑅(1)𝛼(𝑟2) + 2𝛼(𝑟)𝑅(1)𝛼(𝑟)′ = 0         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈  𝑀. 
The above relation can be written in the for 

          [[𝑅(1), 𝛼(𝑟)], 𝛼(𝑟)] =  0                                        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈ 𝑀.                                 (19)  

 Linearization Eq. (19) gives 

   [[𝑅(1), 𝛼(𝑟)], 𝛼(𝑦)] + [[𝑅(1), 𝛼(𝑦)], 𝛼(𝑟)]  =  0     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑦 ∈  𝑀.                          (20) 

Putting ry for y in Eq. (20), because of Eq. (19) and Eq . (20), we obtain 

   0 = [[R(1), α(r)], α(ry)] + [[R(1), α(ry)], α( r)] 

      = α(r)[[R(1), α(r)], α(y)] + [ α(r) [R(1), α(y)], α(r)] + [[R(1), α(r)]α(y), α(r)]. 

Thus, we have 

           [𝑅(1), 𝛼(𝑟)][ 𝛼(𝑦), 𝛼(𝑟)] =  0                              𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑦 ∈  𝑀. 
Since α is a surjective endomorphism of M. The substitution α(y)R(1) for α(y) in the above 

relation gives 

           [𝑅(1), 𝛼(𝑟)]𝛼(𝑦)[𝑅(1), 𝛼(𝑟)] =  0                  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑦 ∈  𝑀. 
whence it follows  R(1) ∈ Z(M), which reduces Eq. (18) to the form  

           𝑅(𝑟) =  𝑅(1)𝑟                                                        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈  𝑀. 
The proof of the theorem is complete. 

 

Corollary 3.10 

     Let M be a 2-torsion free semiprime semiring with an identity element and let R: M →M 

be an additive mapping. Suppose that R(r3) + rR(r)r' = 0,  holds for all r ∈ M. In this case R is 

a centralizer. 

 

4. Conclusions 

     In this work, we discussed an inverse semiring, centralizer of inverse semiring, Jordan 

centralizer, α-centralizer, Jordan α-centralizer. And then  we prove that every left (right) 

Jordan α-centralizer is a left (right) α-centralizer. 
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