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Abstract:

In this paper, the nonclassical approach to dynamic programming for the optimal
control problem via strongly continuous semigroup has been presented. The dual
value function Vp ( .,. ) of the problem is defined and characterized. We find that it
satisfied the dual dynamic programming principle and dual Hamilton —Jacobi —
Bellman equation. Also, some properties of Vp (. , .) have been studied, such as,
various kinds of continuities and boundedness, these properties used to give a
sufficient condition for optimality. A suitable verification theorem to find a dual
optimal feedback control has been proved. Finally gives an example which
illustrates the value of the theorem which deals with the sufficient condition for
optimality.
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Introduction:

The theory of semigroup of linear operators lends a convenient setting and offers many advantages
for applications. Control theory in infinite dimensional spaces is a relatively new field and started
blooming only after well —developed semigroup theory was at hand [1,2]. Many scientific, engineering
and economics problems can be modeled by partial differential equations, integral equations can be
described as differential equations or differential inclusion [2,3].

A basic topic in optimal control is the analysis and applications of a specific value function, namely,
the minimum cost in an optimal control problem as a function of the starting time and state (fixed
initial point). Dynamic programming (briefly DP)is a branch of optimal control theory that deals with
such a value function, i.e., whenever this value function is a Lipschitz solution for the partial
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differential equation of DP, known as the Hamilton —Jacobi —Bellman (briefly, HIB) equation, then it
satisfies the sufficient conditions for optimality [2,4-9].
The problem to be investigated in this paper is the following optimal control problem. We will
consider the following state equation:
z(t)=Az(t) +f(t, z(t), ut), te [0, T]
z(0) = x, (1.1)
where A : D(A) c X — X is the generator of some strongly continuous semigroup of linear bounded

operators (briefly, C, semigroup) {eAt}tZOon a separable Hilbert space X, with X'= X, * denoted

the dual, where f :[0, T] x X x U — X is a given map with U a metric space in which the control u(t)
take values.

Thus, for any initial state x € X and control u(.) € U[0, T]={ u: [0, T]—>U| u(.) measurable }, the
corresponding trajectory z(.) is the mild solution of (1.1) given by [10]:

t
2t) = ePx + [ A=) (s 2(s),u(s))ds, te [0, T]. (1.2)
0
We will assume that f is Lipschitz continuous in z, uniformly in (t, u) € [0,T] x U. Thus, the (mild)
solution to (1.1) is uniquely determined by the initial state and the control [10].
Our cost functional is given by the following

:
JuE)= [ £Ot z(),u(®)dt+ h(z(T), (L.3)

where f°:[0,T]x X xU — R and h: X —R are given functions. And the optimal

control problem is stated as follows:
Problem (C). Find u(.) € U[0,T], such that

J(aQ))= inf  J(u()). (1.4)

u() e U[0,T]
Now, let us describe the DP method. Instead of considering Problem (C) with (1.2) and (1.3), we
consider the following family of optimal control problems:

For any given (t,x) e [0, T] x X, let us consider the following state equation

S
Zt x(S) = eAy 4 I eAGT £ (r, zex (r),u(r)) dr, s e[t, T], (1.5)
t
with u(.) € U[0,T] and the cost functional
T
Jg xU()= j FO(r 2y ((Nu(r))dr + h(zg (). (1.6)
t

Here, the subscripts t and x are used to emphasize the dependence of the trajectory and the cost

functional on the initial condition (t, x). Next, we define the function V : [0,T] x X — R by the
following :

V(t,x)= inf th(u(.)), V (T, x)=h(x). (1.7)
u() e Ut, 7]
The function V is called the valued function of Problem (C).

In [2, Chapter 6] the author devoted to the study of another important approach to optimal control
problem, he introduced the DP method for problem (1.1). For problem (1.1), but when f (., ., .) = Bu(.)
where the control operator B is linear and unbounded, Faggian [11, 12], applied the DP to show that
the value function of the problem is a solution of an integral version of the HIB equation. Also
Faggian [13] applied DP to show that the value function of economic problem is the unique strong
solution of the associated HJB equation. The classical and dual DP for finite dimensional optimal
control problem of Bolza have been introduced in [6, 14], if we used the dual DP [14] we need not
require that the value function is differentiable, which is essential in the classical method [6]. In [4]
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the authors applied the dual DP to prove that, the existence of a maximum solution to HJ equation for
the Lagrange problem. Also, the existence of a minimum solution to the dual partial differential
equation of DP for optimal control problems of Bolza and Lagrange have been proved by using dual
DP in[5].

From all the above one can find a reasonable justification to accomplish the study of this paper.
Thus, the aim of this paper is to describe the nonclassical approach to DP via semigroup theory for
optimal control Problem (C). The dual value function of this problem is defined, and we show that
this function satisfied the dual DP principle and dual HIB equation. Another properties of dual value
function have been studied, these properties used to give a sufficient condition for optimality. Also a
verification theorem to find an optimal state feedback control via dual value function have been
proved.

The method used in this paper is completely in the spirit of DP technique, although it is quite new in
the study of the value function.

Definitions and Theorems:

Before proceeding to main results, we shall set in this section some definitions and theorems that
will be used in our subsequent discussion.
Definition 2.1 [2]: Let X be a normed space. Then the set of all bounded linear functionals (or linear
continuous functional) on X constitutes a normed space with norm defined by

| f{=sup(| f(x)|/|x]:x e X, x=0)=sup(f(x)|:xex,|x]|=1)
Theorem 2.1[15]: Suppose that the first partial derivatives of f (x, y) are defined throughout an open
region R containing the point (X, yo) and that f,and f, are continuous at (XO, yO). Then the

change
Az= f(x0 +AX, Yo +Ay)-— f(xo, yo), in the value of f that results from moving from (Xo’yo

) to another point ( X, t A X, Yo t A y)in R satisfies an equation of the form

Az = fX(xo,yO)Ax+fy(x YJAY +aAX+e,AY,

0'Yo
In which each of &1 &, —0 asbothAx,Ay—0.

t
Corollary 21 [9]: If 0<m(t) < D+ C [ m(r)dr fors < t < T where C, D are nonnegative
s

constants. Then: mt)< D e (t—s)
Inequality (2.1) is called Gronwell’s inequality.
Definition 2.2 [10]: Let X be a Banach space. A one parameter family T (t),0 <t < o, of bounded

linear operators from X into X is a semigroup of bounded linear operators on X if
i.  T(0)=1,(Iisthe identity operator on X),
ii.  T(t+s)=T(t)+T(s)foreveryt, s> 0 (the semigroup property).
A semigroup of bounded linear operators, T (t), t > 0 is uniformly continuous if

lim [T@®) -1 =0, (2.2)
t—>0"

, SSt<T. (2.1)

Definition 2.3 [10]: A semigroup T (t), 0 <t < oo, of bounded linear operators on X is a strongly
continuous semigroup of bounded linear operators if
lim T(t)x=x  forevery xeX. (2.3)
t—>0"

A strongly continuous semigroup of bounded linear operators on X will be called a semigroup of class
C, or simply a C, semigroup.
Definition 2.4 [1]: The infinitesimal generator A of a C,- semigroup on a Hilbert space X is defined
by

Az= Ilim %(T(t)—l)z (2.4)

t—>0"

1473



Al-Jawari and Al-Anbagi Iraqi Journal of Science, 2015, Vol 56, No.2B, pp: 1471-1488

Whenever the limit exists, the domain of A, D(A), being the set of elements in X for which the limit
exists.
Corollary 2.2 [10]: Let T (t) be a uniformly continuous semigroup of bounded linear operators. Then

(a) There exists a constant » > 0 s.t | T(t) [<e®”. (b) There exists a unique bounded linear operator

Ast T(t) —eAt, (c) The operator A in (b) is the infinitesimal generator of T (t). (d) t — T(t) is
differentiable innormand d T(t)/dt=AT(t)=T(t) A
Example 2.1 [1]: Let X be a separable Hilbert space, the mapping given by

Tix= 3 e (xp o,

n=1
is a C, semigroup on X, where { gon, n > 1} be an orthonormal basis in X, and{4, n > 1} bea

sequence of complex numbers with sup Re{4,} < .

The infinitesimal generatoris Ax = 3, /ln @, (gon, X ), with the domain
n=1

© 2
D(A) ={x: X |4, (g, x)| <o}
n=1
Example 2.2[2]: Let A € R™" be an (nx n)- matrix. Then T(t) = eAt= v (Aktk/k!), t>0, isa
k=0
C, semigroup on X = R". It is well known that eAl js the fundamental matrix of the (homogeneous)
ordinary differential equation: z (t) = Az (t).
Definition 2.5 [2]: Let X be a Banach space. Suppose ¢ : X — R and X, € X. We define
P(X) — @(X0) =Y, X — Xo) <03,
X — Xo

D'o(x)={yeX'| lim
X—>Xo

We call D" ¢ (xo) the superdifferential of g at X,.
Properties of the value function:

Let us take the problem (1.1) in section 1, the goal of this section is to characterize the value
function V(., .) in (1.7). The first result is the following theorem, which is called the DP principle.
Theorem 3.1 [2]: Let (t,x) €[0,T]x X. Then, foranys e[t,T],

V(t,x)= inf {jsfo(r,zt (r),u(r))dr+V(s,zt (s)}
u() e Ult,s] X X

The next goal is to derive the so-called HIB equation for the value function V.

Proposition 3.1 [2]: Let the value function V be Cl([O,T]x X). Let the functions f, f© and h be
continuous. Then V satisfies the following HIB equation:
Vt +(Vy, AX)+ H(t, x,VX) =0, (t,x)e [0, T]xD(A),

V|t:.|.=h(x), xeX,
Where H(t,x,q)= inf {(q, f(t,x,u))+ fO(t,x,u)}, (t.x,q) € [0, T] x X x X.

ueU
For more details about properties of the value function one can refer to [2,7,11,12,13].
Semigroups for dual dynamic programming:

In this section we suggest the nonclassical approach to DP for the control problem (1.1) via
semigroup theory, the domain of exploration was carried out from the (t, x)-space to the space of
multipliers ((t,y%,y)-space). We will define the dual value function for the problem (1.1), and study
some properties of this function such as, the dual value function is a solution to the dual Hamilton —
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Jacobi —Bellman (DHJB) equation, which is essential in study the optimality. Finally, a suitable
verification theorem is proved.
The Dual Value Function:
Let us take the optimal control problem as introduced in section 1. And we define an admissible pair
for these problem as follows.
Definition 4.1: For the problem (1.1), any pair (z(.),u(.)) € C([0,T]; X ) x U[0,T] satisfying (1.2) is
called an admissible pair.
Now, let K = R x X denoted a set covered by the graphs of all admissible trajectories for the

problem (1.1). And let P = R? x X be a set of variables (t,y%,y)=(t, p), te [0,T], with

y® <0 and nonempty interior. Take a function z(t, p) defined on P such that (t,z(t, p))e K,
(t, p) € P, we assume that it is measurable, locally bounded and that for each admissible trajectory

z (t) lying in K, there exists an absolutely continuous function p (t)=(y°, y (t)) lyingin P such
that z(t)=z(t,p(t)), and if all trajectories z(t) start at the same (to,xo), then all the

corresponding p (t) have the same first coordinate yo.
Thus, we can define the real value function VD(t, p) inaset P < R x X of the dual space

(t,y%, y)=(t,p), y° <0 as follows:

.
Vp(t,p) = inf{-y® [ £O(r,z; ,(r)u(r))dr—y°h(z ,(T))}
t

= inf {-y%J; , (u())}, (4.2)

where the infimum above taken over admissible pairs z (7), u(zr), z<[t,T], whose trajectories
startat (t,z(t, p)), and

Vp(T.p) = —y°h(z; 4(0),p(0)) = ~y°h(x).
The function VD is called the dual value function of the Problem (C) which is discussed in section 1.
Remark 4.1: Let Vy (t, p) be as in (4.1) but with Kiand z(t, p) defined above. Then we see that

Vot p)=-y°V(tz(tp), (tp)eP, y°<0.

Following, we get a modification of Th. 3.1, and Prop. 3.1. Thus, the goal of this section is to
characterize the dual value function. Our first result is the following theorem, which is called the dual
DP principle.

Theorem 4.1 : Let z(t)=z(t,p(t)),(t, p) eP,where (t,z(t, p))eK =[0,T] x X. Then for any
set,T],

T
Vot p)= inf{-y® [ £O(r,zg ,(N.u())dr+Vp(s.z; ()}, (42)
t
Where the infimum above is taken over admissible pairs z (7), u (z), = €[t, T], whose trajectories

startat (t,z(t, p)).
Before proving the above theorem, let us first make some observations on (4.2). Suppose (4.2) holds
and for a given(t,z(t,p))eK, there exists an optimal controlU(.), and Z; ()=

Zt’ 200, p(0) (., p(.)) is the corresponding optimal trajectory. Then

T
Vpt,p)=-y° | FO(rz; 4 (r, p),a(r))dr—y° h(z; «(T,P))
t
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)
= Y0 [ 1002, (0L dr—yP [ 19,2 (r,p) (D) dr - yOh (2, (T, p)
t

S

—y? {Sf"(r,zt,x(r, B u () =y 7 (6)(] (o)

> —y0 js £O(r,z, o (r,p),U(r))dr+Vp (s, Z; 4 (s, p)) (4.3)
t

> inf {=y° | 01,2, y(r, P).UM) dr +Vp (5,2 4 (5, P))} = Vot P
t

Where the infimum above is taken over admissible pairs z(z), u(z), z [t,T], whose trajectories
startat (t, z (t, p)).
Therefore, the equalities in the middle of (4.3) hold. This implies that

0 — _ =
Y5 (U 5T = Vp (8.7 (s P)
In other word,U| [s T](.) is an optimal control of the problem starting from (s, Z, L(8) =

(5.Z; x(s,P(s))) with the optimal trajectory zt,x| [s,T](')= Zt,x(.,ﬁ(.))| [s,T](')' This

says that
Globally optimal — locally optimal,
Which is the essence of the DP method.
Now, let us given a proof of Theorem 4.1
Proof of Theorem 4.1. First of all, for any u(.) € U[s,T] and any u(.) € U[t,s], by putting
Theorem concatenatively, we obtain u(.) € WU[t, T]. Thus by definition of the dual value function

we get that

T
Vot p)<=y® | £O(rz (. p)u(r))dr-y®h(z (T, p))
t

S T
=—y° [ £0rzg y(r,p)u(m)dr—y® [ £O(r 2 (r,p)u(r)dr—y® h(zg (T, p)
t S
S
:_yO .[ fo(r' Zt’x(r! p),U (r))dr_ yO ‘JS, Zt X(S’ p)(u ())1
t '

by taking the infimum over admissible pairs z(z), u(z), = € [s, T], whose trajectories start at
(s,z(s, p))eK, we obtain

S
Vp(t, p) < —y0 { f°(r,zt’x(r, p),u(r))dr+VD(s,zt,X(s, p)).

Consequently,
Vp (t, p) < Q(t,s,x) = The right -hand side of (4.2).

Next, for any € > 0, there exists a u¢ () € U[t,T], such that
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Vp(tp)+e = —y03, L (UF ()
S
= _yO :[[ fo(r,Zt,X(r, p)lug(r))dr_yo‘ls’zt’x(s) (ug())
> — 0 jsfo (r.zg y (1, p),ug(r))dr+VD(s,zt,X(s, p))= Q(t,s, x).

t
Hence, (4.2) follows. o

Our next goal is to derive the dual HIB equation for the dual value function VD .
Proposition 4.2: Suppose that z(t) = z(t, p(t)),(t,p)e P < R* x X where (t,z(t,p)) K
= [0,T]x X. Let the dual value function V5 e CL([0, T]x (~ o0, 0]x X), and let the functions f,

f ©and h be continuous. Then VD satisfies the following dual HIB equation
VDt +<VDX,AX)+H(t,x,VDX): 0, (t,x) € [0, T]xD(A),
(4.9)
Vp | t=T=—yO h(x), x eX
Where

H(t,x,v)=inf {(v, F(t,x,u))—y® £O(t,x,u)}, (txv)el[0, T]xXxX
ueU

Proof: First, by definition, VD (T, p)=-Yy° h(x) is satisfied.

Next, let us fix a ueU and xe D(A) (the domain of the generator of C, semigroup eAlon

separable Hilbert space X ). By (4.2) and Th. 2.1, we have that

0 <Vp(s, Zt,X(S))_VD(t’ p)-y° js f°(r,zt,x(r, p),u(r))dr
t

a

Vp (5,24 4 (5. P)) V(L P)=y° [ T0(r, 2 y(r, p),u(r))dr
t

= VDt(t1 p)(s_t)+<VDx(t! p)!zt,x(s’ p)—X>

S
—yO [ £O0r 7y (rop)um)dr+o(| s=t[+] z x(s.p)-x ). (45)
t
We not that because x € D(A), we see that

1 1, As—t) 1 S As-T)

—(z s,p)—-x) =— (e -I)x+— [ e f(r,z, ,(r,p),u)dr

(74 (5p)=x) = ] (1,2 , (1))
—>Ax+f(t,x,u) as st (4.6)

Hence, dividing by (s—t) in (4.5) and sending s ¥ t , we obtain that

0 < Vpi(t p) + (Vpy (L, p), Ax+f (txu))—y° £O(t,x,u), Vu e U.

Thus, it follows that
0 <Vpi(t, p)+(Vpy(t, p), AX) + H(t,X,Vp, (L, p)). (4.7)
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On the other hand, let xe D (A) be fixed. For any & > 0 and s > t, by (4.2), there exists a
0()=u®S() e U[t,s], such that

£(5=1) = Vp (5,2 3 (5, P))~Vp (6, P)=y° [ 1°(r 2y y (r, pE(M)dr
t

A(s—t)_l)X>

= Vpi(t, P) (s—1) +(Vpy (1. p), (e
OVt D), (2 (LT —y0 [ 1002, (r p).TO)r +0(fs—t])
t t

A(s—t)

= Vg (1) (=1 +(Vp, (1, D), (¢ 1)%)+ {S{<va<t, p). F(tX0(N))

—yfO(t, x,U(r))}dr +o(|s—t|)

A(s—t)

>V, p)(s—1) +(V,, (t p). (e 1)x)+H(txVp (¢ p))(s—t)+o(|s—t]).

Then, dividing through by (s —t) and letting s,t — O, we get that

& 2 Vp(t p)+ (Vpy (1, p), AX) +H(t, X, Vpy (L, p)).

Combining with (4.7). We obtain the desired result. o
Remark 4.2: We derive the dual HIB equation (4.4) by assuming the dual value function VD to be

Cl([O,T]x X)) . This assumption, however, is not necessarily true in most cases. We will provide an
example below to illustrate this point. Hence, the conclusion of Prop. 4.2 has lack of applicability. Thus

we can introduce proper notions of solutions to the equation (4.4) so that the dual value function VD is

the unique "solution" of (4.4).

To conclude this section, let us present an example where the dual value function is not in
cl(0,T1x X).
Example 4.1: Consider in R the following system:
Zt,x(s’ p)=u(s) Zt,X(S’ p), se[t,T],

2 (t,P)=2(0,p(0))= X,
with the control domain U =[0,1] and the cost functional
I x(U0)) =2 (T, p).
Then it is not hard to see that the dual value function is given by
—y92(0,p(0)) = —y°x,x>0and y° <0
Vp(t,z2(0,p)) =Vp(t,x)=
—y°2(0,p0))e" ~t =—yOxeT ~ x<0,y*<o0.
Cleary, V[ (t, X) is just Lipschitz continuous and is notC?.
Remark 4.3: If we define the dual value function Vp, in (4.1) as follows

;
Vo(t,p) = sup{y® | fO(r,z; , (,u(r))dr+y®h(z (M)}, (4.8)
t
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Then by using simple change in the proof of Th.4.1, we can obtain the following result.

T
Vg (t, p)= sup{y® | rze w(N,u(r))dr+Vp(s,z; (5))}:
t
Also, for Prop. 4.2, we see that the dual value function (4.8) satisfies the (DHJB) equation (4.4) but,

where
H(t,x,v)= sup {y° fO(t,x,u)—(v, f(t,x,u))}(t,x v)e[0,T]x X x X, and
ueU
VD|t:T:y0h(X)’ xeX.

Properties of the dual value function:
We present some basic properties of the dual value function associated with our optimal control
problem. As in previous sections and hereafter, we let X be a separable Hilbert space with the inner

product {.,.) and the induced norm| . | We also let U be a metric space in which the control takes

values.

We first study the continuity of dual value functions. In what follows, by a modulus of continuity,
we mean a continuous function W : R* — R*, with W (0) = 0 and subadditive : W (o1+ o,) < W(o1) +
W(o»), forall o1, o, > 0; by a local modulus of continuity, we mean a continuous function. W : R*
x R* —R", with the property that for each r >0, o+ W (o, r) is a modulus of continuity. In what

follows, in different places, W will represent a different (local) modulus of continuity.
Next, let us make the following assumptions:

(Ay) The linear, densely defined operator A:D ( A) © X — X generates a C, contraction semigroup

At

e’ on the space X. Thus

[eAt <1 vt=o0 (4.9)

(A2 f: (—0,0]%[0,T]x X xU — X is continuous, such that for some constant L > 0 and local
modulus of continuity W,

| f(t, z(t, p),u)— (€, 2, p),u) |<L|z(t, p)—Z(E, P) | +W (|t £, |z(t, p) | v |Z(T. P)])
Vv (t,z(t,p)), (t,Z(t,p) eK&(t, p), (t,p) €P, u € U, (where v denoted or) (4.10)
| f(t,0,u)| <L, V(tu)e[0TIxU (4.11)

(As) fO:[0,T]x(—0,0]x X xU >R And h: X — R are continuous, and there exists a local
modulus of continuity W such that

‘ FO(t, 2(t, p),u)—fo(f,Z(t',ﬁ),u)‘S
W ([z(t, p) - z(E, P) [+[t =t [z(t, p) |v[z(E, P)])
(4.12)
|h(z(t,p))-h(z(f,p))| <
W(| z(t, p)-2z(t, p) |, z(t, p)|v| Z(E, P) )
vV (t,z(t,p)) (t,Z(t,p)) e K& (t,p),(t,p)eP,ucU
| £9(t,0,u) ||h (@) | <L WV(tu)e[0TIxU, (4.13)
For some constant L > O (here, we take it to the some as that in (A,) just for simplicity).
(A2)" In (A,), replace (4.10) by the following:
| f(t,z(t,p),u)—f(t, Z(f,ﬁ),u)| SL(| z(t, p)—z(t, ﬁ)|+|t—t—|)
V(tz(t,p)),(t,Z(t,p)) eK&(t,p),(t,p)eP,uecU
(Ag)" In (Aj3) replace (4.12) by the following

(4.14)
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‘ £O(t, 2(t, p),u)— O (L, Z(f,ﬁ),u)‘sL(| 2(t, p) - 2(f, p) | +[t—T )

[h(z(t,p))-h(z(f,p))|<L|z(t p)-Z(f, P)| (4.15)
Y (t, z(t, p)),(f,Z2(f, p))eK &(t, p), (f,p)eP, ue U

Remark 4.4[1]: We known that for a general C, semigroup et one always has [ el <™ ol

for same M > 1and w,e R . As we are considering semilinear evolution equations, @, can be taken to
be 0, with out loss of generality. Thus, (4.9) is restrictive only in that M = 1. However, it is not hard to
see that all the results in this subsection remain true for general cases.

It is clear that under (A;) and (A,), forany (t,z(t,p))e K&(t,p)eP and u(.) € U[t,T],

the state equation (1.5) admits a unique trajectory z; (., p()).

To study the boundedness and the continuity of the dual value function Vp, we first need to look at
some properties of the trajectory z, X(., p(.)). We collect these properties in the following lemma. In

what follows, C is an absolute constant that can be different in different places.

Lemma 4.1: Suppose that z(t) = z(t, p(t)), (t,p) € P = R* x X where (t,z(t,p)) € K =[0, T
] x X. Let (Ay) and (A,) hold then for any 0<t<t<T, z(0,p(0))=x, Z(0,p(0))=X € X,
and u () e UJt, T], we have

2 x(5.P)| < C(+[x]), seltT] (4.16)
ztlx(s,p)—zt,)—((s,p)‘sC|x—>‘<|, selt,T] (4.17)
20 (5 P) =2 (8. ) | <C (7Y — 1) x|+ C (14| x| (E-t) self T] (4.18)
z¢ x (s, p)—eA(S_t)x < C(1+|x])(s-t), sel[tT] (4.19)
Proof: If we take (t,z(t, p)) € K, then from (L5) and (4.14) we have

2 (5P| €| A0 |+ {S\ A (rz, ,(rp)um) [or

< x|+ fs‘ f(rz  (r,p)u(r))=f(r,0,u(r))+f(r,0u(r)) ‘dr
" ,

S B _ S
<[x|+ J{L+L] 7 (r.p) [}dr < L(s=t)+|x|+L [ |z, (r,p) [dr.
t t

Thus, by Gronwell's inequality (2.1), we get that

‘Zt,x(s’ p)‘ < (L(s—t)+]x]|)e
Now, from (1.5) and (4.14) we have

L(s-t) < C(1+] x|), Proving (4.16).

‘zt,x(s,p)—zt’)_((s,p) < eA(S_t)x—eA(S_t)y‘
S

+ 7 cA(s—T) | f(rz  (rop)u()—f(r.z o (r,p)u(r)) I
t

S
S|X—)_(|+ J. I—‘ Zt’x(r)p) - Zt,)—((r’p) ‘dr
t
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Thus, by Gronwell's inequality (2.1), we obtain that
< | x—>_(|eL(S_t) < C|x—x|, proving (4.17).
Now, we take 0 <t <t < T and Xe& X. From (1.5) and (4.16) we have.

- t S
‘ z, (sP) =2 (s.p) ‘s eA(S_t)x—eA(S_t)‘+ { L(1+‘ztlx(r, p) ‘+ t[‘ztx(r, p)—z¢ , (r, p)|dr

<

Clatat —I)x‘+L[1+C(1+| x[)] (E-t)+ JS‘Zt (1 P)—2z¢ X(r-p)‘dr-
At ,

Thus, by Gronwell's inequality (2.1), we obtain (4.10). Finally, from (1.5) and (4.16) we have
A-1)

S
2, (s.p) - < {L(1+\ 2 (1. P) )dr< C(1+|x|)(s-t),

proving (4.19). o
We have seen that the estimates in (4.16)—(4.19) are uniform in the control u(.). This is crucial in

obtaining the properties of the dual value functionVD(t, p). The next result continuous the local

boundedness and various kinds of continuities of the dual value function.
Theorem 4.2: Suppose that z(t) = z(t,p), (t,p) € Pc R? x X, where (t,z(t,p)) e
Kc[0T]x X and z(0,p(0))=x, Z(0,p(0))=Xe X. Now let (A;)-(As) hold. Then, for

some increasing function é and some local modulus of continuityV\7 :
\VD(t, p)‘ <|-y% [C|x| Vt €[0,T], xeX, y’<o. (4.20)

‘VD(t, p)-V, 5)‘3‘—y0‘ W ([x=x|,| x|v|X]) vte[0,T], x, X € X,y® <0.  (421)
Vp(t,p) -V (£,p)] < ‘—yo‘ V\7(|t'—t|+|(eA| t-t]_ )x|,| x|), (4.22)

v t,fe[0,T], xe X, y°<0.
Vp (. p)—VD(t',eA(f_t)x) S‘—yO‘V\?(f—t,|X|)VOSt_fST,XGX,yO<O. (4.23)

Consequently,

‘VD(t, 0)— (=y°h (eAT D)) g‘— yo‘V\7(T—t,|x|)Vte[O,T],XeX,yO<0. (4.24)

In the case where (Ay), (A;)' and (As)' hold, we have some constant C > O such that
\VD(t, p)\ <[-y% [C(1+]x]) ¥ (t,x)eK, y°<O. (4.25)

Vo (L p)-Vp(t. )| < [-y° [C|x=X] vx XeXy'<O. (4.26)
_ - t—t
Vot p)-VpE )| < Fy° | ceas|xhie-t)+ | VT onx ) @
vt e [0, T], x e X.

‘VD(t, p) —V, (£, eAl ~Dx) s‘ —yO‘C @+|x])|t—f|,vO<t<i<T,xeX,y°<0.  (4.28)

Proof: For any t€[0,T],X,Xe X, yo <0, and any control u(.)e U[t,T], by (4.12), (4.13) and
(4.16) we have

Vp(tp) <] ~y03 4 (u0) |
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i
Y[ E0(nz (np)um)dr-yOh(z (T, p)
t

<| —yO° jT{fO(r,zt’X(r,p),u(r)) — fO(r,0,u(r))+ fO(r,0,u(r))}dr ‘

t
+| =y Ih(z (T, p)= @+ (O] |

<y £ AL+W (|2 ()| |2 (r. P )3+ -y LW ([ o T, B[ T2 O3
t

T
<|-y?| | {L+W(C (1+]x]),C(1+]x|))}dr+|-y°|{L+W(C (1+]x|),C (1+]x|))}

t
= |- yO {L+W(C (14| x[),C (1+] X))} (T =) +|- y°| {L+W (C (1+] x|),C (1+| x|))}
< (T+1) |-y°] {L+W (C (1+] x|),C (1+| x|))}. This gives (4.20).

Now lett € [0,T], X, X € X, y°< 0, and u(.) € U[t,T], by (4.12), (4.16), (4.17) we
have

=90 3 (UOD) = (=2 g (UOD) | = | (=¥ ¢ (U0) =3y x (U]

-
= | (=¥)LJ 1Orzg y(r p)u))dr+ h(zg 4 (T,P))
t

)
~ 1 10(r 2y 5(r, p)UM) dr=h(z ¢ (T, p))] |
t

<l-y°| [ 1oz, - oz, p).u(r)|dr +[-y°
t

h(z, (T B) =Nz, , (T.p)

VAN
|
<

W (5, 9) 2 g 6,0 o 0D v [
t

=y Wz T ) =2 g T P20 TP v]2g £ T P

-
<|-yo| fw(c|x-x%|,C(1+|x|v| >‘<|))dr+‘— yO‘W(C| x—X|,C (1+] x|\ X[))

t
s‘— yo‘(T FDW(C| X=X |,C(1+] XM % ).
Thus by taking the infimum of last inequality over admissible pairsz(z), u(z), z €[t,T ], whose
trajectories startat (t, z (t, p)) € K, we obtain (4.21).

Next, we let0<t<t<T, xe X, y0 <0, by (412), (4.13), and (4.18) for any
u(.) € UL, T], we have
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Y03, (D) =T Y03, (BT = (YOI, O =3 (Eu)}

< ‘_ yO‘ {t{L+W(‘zt1X(r, p)‘,‘ztx(r, p)‘)}dr
+-y {Tvv(\zt,x(r, D= 25 (P, [z (D) V2 (1)
-y Wiz, TP =2, (TP 2 (P v ()

< ‘— y°}{L+W(c (L+]x]),C (L+]x[))}(E-1)

(eA(f_t) —1)x

+‘—y°‘(T +1)W(C +C (14| x|) (1), C (1+|X)).

Then we can define W such that (4.22) holds.
To prove (4.23),let te [0,T],and xe X, y® <0 forany u(.)e U[t,T] by (4.19)

VIR0V o, @O [ | YO WOV ey WO
T
- YO 1Oz (rp)um)dreh (2, (T,P))
t

)
— [ £9(r, . . p), dr—h . T,
00z, p (MU gy (TiP)] |

2y (r,p),u(r))—£O(r,0,u(r))+ fO(r,0,u(r)))dr ‘

+ (y)If (12 U= 1Oz gy () U()dr \

4 (y )[h(ztxcr M=z g T "1 \

-y°| {{L+W(\ 2 (1. 0) | 2 (P )}

IA

=y | "wl 7092 a0, 0) b 2x® 0 [V 2 a0 ar
+ y\W(| 7T D=2 g0, T H 2. T [V] 2 ag g 00D

< |- yOl{L+W(C (1+]x |),C(1+| HE-t)

-yl T rwee] 7 € -eAY e x|y

<= yO  {L+W(C (1+] x]),C(1+]x]))H(T-t)

+- YO (T +1)W(C (1+]x|) (T -t),C (1+| x|))}.
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Hence we can define W such that (4.23) holds. Finally forany te [0, T]
andz (0, p(0)) = x e X, y%<0,u() e U[t,T] and by (4.12), (4.13)

| =03 @) -[-y°h (AT 7Y0T |= | (-y)[3; () -hE* T 0] |
T
< | DL 002U ar e (2 P - (AT 007 |

T

< j‘ YO FO(r zg y (rp).u(r) = £O(r,0,u(r))+ £ (r,0,u(r))] ‘dr

t
Hey W 2 @) =eAT 0 || 2, (T p) [v] €AT70 )

‘ y ‘T L+W(C (14| x|),C (1+| x|))} ‘ ‘W(C(1+|x|)(l'—t) c(1+| x|)).

Hence we can define W such that (4.24) holds. The conclusion under (Ay), (Ay)’, and (Az)' can be
proved similarly. o
A Verification Theorem:

We will find a dual optimal state feedback control via dual value function, in some generalized sense.
Now, let us introduce the following notion. Let K, P and a function x(t, p) defined on P such that (t, x(t, p))

e K, (t, p) € P, be as defined in subsection 4.1. For the function ¢: [0,T] x (—0,0] x X —R, with
fixed to, @ (t,,z(0,p(0)), (t,p) € Pc R? x X is a function of z (0, p (0)) we may define its super
differential in z (0, p(0)) denoted by D; @ (ty,,2(0,p(0))), on the other hand, we define
D*¢(t,. 2(0, p(0))) in the following way:

D+¢(t0’2(0, p(0)) )= { (@,a)e RPx X ‘

i o(t, z(t, p(t)) — ¢(to, 2(0, p(0)) — a(t —t,) — (&, z(t, p(t)) - z(0, p(O))>
im
thig,2(t,p)>2(0,P(0)) \t—t \+| 2(t, p(t)—2(0, p(0))]
Next, in the following Theorem we give a sufficient condition for an admissible pair to be optimal.
Theorem 4.3: Suppose that z(t)=z(t,p(t)), (t,p)ePc R* x X where (t,z(t,p))
e Kc [0,T] x X. Now, let (A1), (Ay)", and (A3)', hold, let (Z (., p(.)),u(.)) be an admissible pair
suppose that

Z(t,p)eD(A), ae, te[0T]; Az(.p()el}([0T],X), (4.29)
and there exists a function y (.) such that

[~y @)L AZEP)+ T (L2 PN +Y° 1002 P).TM). YO0 P)

e DTVp (,Z(t,p)) ae, te[0,T], y°<0 (4.30)
Then (z (., p(.)),u(.)) isoptimal.
Proof : Let 6 (t) =V (t,Z(t, B)). Then 6 (.) is continuous and for almost all t € [0,T], we have
(see (4.26), (4.27), (4.16), and (4.18))
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165)-60)|= [Vp 5,2 (5. D) ~Vp t. 2t B[ <[-y°| (st ]+| €A V-n 2 p))

< ‘—yO‘C(1+|AZ(t,E)|) |s—t],

Where C depends on z (0, p(0)) = x, the fixed initial state. Thus, € (.) is Lipschitz continuous? On the

other hand, for almost all t € [0, T], we have

Z(t+o,p)=z(t,p)+[AZ(t,p)+ T (t,Z(t,p),u(t))]o+0(0). (4.31)
Thus, by (4.30),
O(t+5)—-0({) =Vp(t+5,Z2(t+5,p))-Vp(t,Z(t,p))

= VD(t+5,Z(t,|T))+[AZ(t, p)+ f(t,z(t, ﬁ),U(t))]§+o(5))—VD(t,Z(t, p))
< SNy (t, p), Az(t, P)+ F(t, z(t, P).T®))+y° Ot z(t, p),u(t))]
+3 YU w(t, P), AZ(t, p)+ f(t,Z(t,P) U(t)))+0(5)

<5y £O(t,Z(t, p),u(t))+0(9).
This together with the Lipschitz continuity of & (.), implies that

do(t)/dt < yo£O(t,z(t, p),ut)), ae, te[0,T]. Thenby (4.2)

S
Vp(t,p) 2 —yo_t[fo(t,z(t,ﬁ),ﬁ(t))+ Vp(s,P) 2Vp(t,p) vost<s<T.

Hence, the pair (Z(., p(.)),u(.)) is optimal. o
Next, forany (t,z (0, p(0)))=(tx) e [0,T]x D (A), we define
i Vpt+o,x+5[Ax+f(t,x,u)]-Vp(t x)
50 o
We have the following result.
Theorem 4.4: Suppose that z (t)= z (t, p),(t, p) € P —R*x X, where
(t,z(t,p)) € Kc [0, T]x X, and let (A1), (Az)', and (As)' hold. Suppose that (Z (., p(.)), U(.)) be
an admissible pair, such that (4.29) holds. Then the following are equivalent:
@ (z(,pQ),u()) isoptimal ;
(i) It holds that
u(t) e G(t,z(t,p)) ae,te[0,T] (4.32)
Proof: Because Zz(t,p)e D(A), ae, te[0,T], by proof of Th. 4.3, we know that
0 (t) = Vp(t,Z(t, p))isLipschitz continuous.
(i) =(ii). Let (Z(., p(.)),u(.))be optimal. By (4.31),
im Vp(t+6,Z(t, p)+o[AZ(t, p)+ f(t,Z(t, p),u(t))]-Vp(t,Z(t, p))

G(t,x)={ ue U

=y0f°(t,x,u)}.

-0 o
. Vp (t+8,Z(t,p)+0(5)) - Vp (L, Z(t,P))
50 o
1 t+0
= lim 5 y© j fO(r,z(r,p),u(r))dr= y°fO(t,z(t,p),U(t)) ae,te[0T] y°<0.
o—0 t

This means that (4.32) holds.
(it) =(i). In this case, we have
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o VD(t+8,2(49) - Vp (4 2(4 )

50 6
_ im Vp (t+0,Z(t,p)+o[AZ(t, p)+ (L, Z(t,p), u(t))]+0(5)) -Vp (t,Z(t, p)
) o

= y° £9(t,2(t, p). U(®)), y° <0.
Then, by the absolute continuity of V5 (t, Z(t, P)) we obtain the optimality ofu (). o

We see that (4.32) gives a representation of the optimal control in terms of the corresponding
optimal state trajectory. Such a form is referred to as a state feedback control. Formally, the dual

optimal trajectory Z(t, p) satisfies the following:

d/dtz(t, p(t)) e Az(t, p(t)) + f (t,Z(t, p(t)),G(t, z(t, p(t))), t [0, T]. (4.33)
This is a differential inclusion in the unknown function Z(t, p(t)) and the control variable does not
appear explicitly. Such a system is called the closed —loop system for our Problem(C). Roughly
speaking, in order to solve Problem(C), we first find a solution of (4.33). We then use (4.32) to
determine an optimal control. We refer to Th. 4.4, as an optimal synthesis.
Example:

Let X be a Hilbert space of infinite dimension. Let A= A": D(A) = X — X be a self-adjoint operator
with the following properties: There exist sequences { @}k > 1< X and {A}e1 < R with the properties
that { ¢} > 1 forms an orthonormal basis of X and {€*} ., forms a basis of L%0,1), such that
0< L., lim 4= +o,

k > o
A(pk:'ik ¢)k,k21.
This can be easily achieved [9]. Now, we suppose that

beX, be=(b,¢g)#0,k>1 (4.34)
aeX ceR, c =(a A la) (4.35)
g=(e*=1)A'b;U=[-22], (4.36)

Also let f (t, z(t), u(t)) = b u(t), t € [0,1], and consider the following system:

2(t) = Az(t) +bu(t), t € [0,1], (4.37)
With u(.) € U={u(.): [0,1] — U | u(.) measurable}.
Our constraint for the endpoints of the state z(0) = 0 and z(1) = q, thus (z(0),z(1)) € {0}x {q} (closed
and convex) c X x X.

Now, let fO(t,z(t),u(t)) = (a, Z, 20) (t)) +cu(t), t € [0,1], and the cost functional is given by

1
3 20U = ! (a2, , o) @) +ou®ldt +hy g (2). (4.38)
Then it is not hard to see that the dual value function is given by
Vp(t.z(t, p)) = u(.i)n;‘ . (—yOJt’Z(O)(u(.))), y? <0. (4.39)

Solutions to system (4.37) are understood to be mild solution [20]. Thus, for given u(.) € U and
initial state z(0, p(0)) = 0, we have

t
(tp)= | eAt=9)py(s)ds, t e [0,1]. (4.40)
0

Here, we suppose that (Z(.,.),u(.)) be an admissible pair for our problem, and let y(.)be the
solution of the following equation
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v =—" U h @ p)+ 1[ A0 ¢ (2, 5),0() W ()

1,
- \[ e =01 0(r, 2(r, p), U(r)dr, t[0,1], (4.42)

With terminal condition /(1) = yOhX (z, p)),y° <o0.
For any admissible pair (z(.,.), u(.)), also let us define the following

T (2(.), u()={te[0]] |Z(f’ P() < DA).
lim L [ ] f@rz(r,p)u(r) - f(t,2(t, p),u(t) |dr =0},
5409 1
Now, we fixat €T (Z(., p),u(.)), then for any se X and z e (t, 1], it is not difficult to see that [21]:

Vp(@.8)-Vp .zt p)< —y° [ £O(r,z, (r,p).T(r)dr +

¥ [1002 (@ pE)r y*hiz, o4 p)-y°h (e p)

=—y%(w(t),s-2(t, P)) + (r ) [-y*(w(t, p), AZ(t, P) + f (¢, 2(t, B), U(V)))
+y? f(t,Z(t, p), u@)]+o (| 7 —t|+|s—2z(t P) | (4.42)
Here, if we take U(.)Elt € [0,1], then by (4.36), and (4.40) the corresponding trajectory denoted

by Z(.) = Z(.,T(.)) satisfies z(1) = jleASb ds=(”-NATh=q.

Thus, it is not difficult to check that, for U =1 we can obtained from (4.42) the following
Y%Up P, AZE P) + (62 D)D)+ YO F (L 2(t P)D), YO w(t, P) e DT V(¢ 2(t, )

Therefore, by using Theorem 4.3, we see that the control U =1t < [0,1] is the optimal control for our

problem.

Conclusions and future work:

Conclusions:

1. Nonclassical approach to DP via semigroup theory for optimal control problem (C) is described
(section 4.2).

2. Dual value function Vp(., .) (4.2), for Problem (C) is defined and proved it a solution to the (DHJB)
equation (4.4), which is essential in the study of optimality.

3. Some properties of Vp(., .) have been presented, such as, various kinds of continuities and
boundedness, these properties used to give a sufficient condition for optimality (Theorem 4.3).
Also

4. A verification theorem to find an optimal state feedback control via Vp(., .) is proved (Theorem
4.4).

Future Work:

1. Semigroup for differential inclusion may be considered.

2. Vp(., .) isaviscosity solution of (DHJB) equation may be proved.

Another kind of continuity of Vp(., .), such as, B—continuity which is essential in the study of

optimality may be studied. Also, another interesting property of Vp(., .) (Semiconcavity) may be

established.
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