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Abstract

This paper focuses on the study of pure Rickart modules (or PR-modules for
short), which are a class of modules over a commutative ring with identity. The
main objective is to investigate the properties and characterizations of these
modules, as well as their relationship with other classes of modules such as free,
projective, and flat modules. This paper also explores the connections between PR-
modules and various algebraic structures such as rings. The results obtained in this
study provide a deeper understanding of the structure and behavior of PR-modules,
which can have important applications in algebraic geometry, representation theory,
and other areas of mathematics. Some results about PR-module have been
investigated in this paper, for example we demonstrate a module M is PR-module if
and only if for every g € End(M), Cy N T4 is pure submodule of M@M (or Cy N
T, <p M®M for short). Also, some kind of generalization of these rings have been
constructed and demonstrated in term of PR-modules.

Keywords: Pure Rickart modules, Direct summand, Kernel of endomorphism, pure
submodules, flat modules.
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1. INTRODUCTION

PR-modules have been extensively studied in the field of module theory and have many
interesting properties. They also have applications in other areas of mathematics, such as
commutative algebra and algebraic geometry. The study of PR-modules has led to the
development of several important concepts and techniques in module theory, including the
use of torsion theories to classify certain classes of modules. The paper on PR-modules has
focused on several different areas, including their structure and classification, their
connections to other classes of modules, and their applications in various fields. We introduce
the definition for PR-module as follows; if for every f € End(M), then Ker f <p M, where
M is a module. In particular, if M = R, then R is called PR-ring if R is pure Rickart as R-
module. In the other side, PR-ring can be obtained from ann(a), a € R is pure ideal of R, see
[1] . Additionally, if we have two modules say M;, M, are R-modules, then M, is an M,-PR-
module (or relatively PR-module to M,), if satisfy the following condition, for every R-
homomorphism f: M; — M,, ker f <p M;, see [1]. Recall that an R-module M is called a
prime R-module if ann(x) = ann(y), for every non-zero elements x and y in M, see [2]. Let
us recall that a ring R is called a Bezout ring if every finitely generated ideal is principal, see
[3]. Recall that an R-module M is called a Quasi Dedekind R-module if every non-zero
endomorphism of M is a monomorphisem, see [4]. Recall that a ring R is a pure simple if 0
and R are the only pure ideals of R, see [5]. Recall that a ring R is a PF-ring if every principal
ideal is a flat ideal in R, see [6]. Recall that a ring R is a flat ring if every finitely generated
ideal in R is flat, equivalently, every ideal in R is flat, see [7]. Recall that an R-module M is
called a flat module, if for every short exact sequence of R-module: 0 - A - B - C = 0 the
sequence 0 - A®M — B&OM — C®M — 0 is also exact, see [8]. Let M be R-module. Recall
that Z(M) = {x € M : ann(x) <, R} is called singular submodule of M. If Z(M) = M, then
M is called the singular module. If Z(M) = 0, then M is called the nonsingular module, see
[9]. Recall that a submodule N of an R-module M is called a fully invariant submodule if for
every endomorphism f: M - M, f(N)c< N, see [10].

In this article, we provide some findings on the PR-modules.
In section 2, we provide a description of PR-modules. We also research relation between flat
and PR-modules. For instance, we demonstrate that, if M is flat R-module, then M is a PR-
module if and only if for every R-homomorphism g: M — M, Cy + Ty is flat, see Corollary
2.18.

In Section 3, we characterize specific ring classes in terms of the PR-modules. For
instance, we illustrate that a ring R is flat if and only if every projective R-modules are
relatively PR-module to any flat R-module, see Theorem 3.13.

Everywhere else in this article, R represent ring with identity and M is a unital left R-module.
For a left module M, End (M) that will mean the endomorphism ring of M. The observes K <
M, K <p M mean that K is a submodule, a pure submodule of M.

2. Pure Rickart Modules by Means of Flat Module

This section provides a characterization for the PR-modules by means of flat module. We
illustrate that a flat module need not be a PR-module and the converse is not true in general,
see Remark 2.5.

Proposition 2.1: Let M;and M, be R-modules such that Vg € Hom(M;, M,),Im g is flat,
then M, is M,-PR-module.

Proof: Let g:M; - M, be an R-homomorphism. We want to show that ker g <, M;.
Consider the short exact sequence
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0—>kerg—l>Mlg>Img - 0.
Since Im g is flat, therefore, ker g <p M, by [8, Proposition 3.67, p. 147].

Proposition 2.2: Let M; be a flat R-module and M, be an R-module, then M, is M,-PR-
module if and only if for every g: M; — M, be an R-homomorphism, Im g is flat.

Proof: Let M, is M,-PR-module and let g: M; = M, be an R-homomorphism. We want to
show that Im g is flat. Consider the shirt exact sequence

0—>kerg—l>M1£>Img—>O
Since M, is M,-PR-module, therefore, ker g <p M;. Since M, is flat by our assumposion.
Thus Im g is flat, by [8, Proposition 3.60, p.139].
The converse follows by Proposition 2.1.

Corollary 2.3: Let M be a free (projective) R-module, then M is PR-module if and only if
Vg € Hom(M, M), Im g is flat.

Proof: Let M be a free (projective) R-module and hence M is flat and let g: M — M be an R-
homomorphism. By Proposition 2.2, the result follows.
The converse follows by Proposition 2.1.

Corollary 2.4: Let R be a pure simple ring. If R is PR-ring, then R is integral domain (ID).

Proof: Let Ra be a principle ideal in R. To show that Ra is flat. Let g:R — Ra be a map
define by g(r) =ra,vr € R. It’s clear that g epimorphism. Consider the short exact
sequence

i g
0—->kerg—R—->Ra-0
Since R is PR-ring, then Ra is flat, by Corollary 2.3 and since R is pure simple and PF-ring.
Thus R is ID, by [5].

Remark 2.5: A flat module need not be a PR-module. Also, the converse is not true. For
example, the module Z, as Z,-module. Since Z, is free, therefore Z, is flat Z,-module. Now
define a map g:Z, - Z, by g(x) = 2x, Vx € Z,. Since ker g = {0,2} is not pure in Z,,
therefore, Z, is not PR-module. For the converse, the module Z, as Z-module. Since 6Z, = 0,
then Zg is not torsion free. Therefore, Z¢ is not flat. But Zg is semisimple, so Zg is PR-
module.

Proposition 2.6: Let R a Bezout domain and let M, be a torsion free (flat, projective) R-
module, then every R-module M; is M,-PR-module.

Proof: Let M; be an R-module and let g: M; - M, be an R-homomorphism. Consider the

short exact sequence 0 - kerg 5 M, A Img—-20

Since M, is a torsion free and Im g < M,, therefore Im g is torsion free. But R is Bezout
domain, then Im g is flat, by [3, Corollary 2.2. 3.1, p.23]. Therefore ker g <p, M, by [11].
Thus M, is M,-PR-module.

Proposition 2.7: Let R a Bezout domain and let M, be a nonsingular R-module, then every R-
module M; is M,-PR-module.
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Proof: Let M; be an R-module and let g: M; - M, l_Je an R-homomorphism. Consider the

short exact sequence 0 - kerg 5 M, A Img - 0.

Since R is ID, therefore, T(M,) = Z(M,) = 0 and hence M, is torsion free. But Im g < M,,
then Im g is torsion free. Since R is Bezout domain, therefore Im g is flat, by [3, Corollary
2.2. 3.1, p.23]. Hence ker g <p M;. Thus M, is M,-PR-module.

Proposition 2.8: Let R be ID and let M, be a singular R-module. Then for every flat R-
module M,, either Hom(M,, M,) = 0 or M, is not M,-PR-module.

Proof: Let Hom(M,,M;) # 0. To show that M; is not M,-PR-module. By contradiction
assume that M, is M,-PR-module and let g:M; — M, be an R-homomorphism, then
ker g <p M. Consider the short exact sequence

0—>kerg—l>M1£>Img—>O
Hence Im g is flat. Since R be ID, then Im g is torsion free, by [8, Proposition 3.49, p.134].

By the first isomorphism theorem k:’rlg =JImg, S0 k’:—rlg is torsion free. Since M, be a singular

R-module, then T(M,) = Z(M,) = M, and hence M, is torsion. But Im g < M,, then Im g is
torsion. Therefore, Im g = 0 which is a contradiction. Thus M; is not M,-PR-module.

Remark 2.9: Let M be an R-module and g: M — M be an R-homomorphisem.
Let Cy =M®0,Dyy =0&M and g:Cy — Dy, be a map define by g(m,0) = (0,g(m)),
for every me M. It is clear that M@M = Cy,; @Dy, g is an R-homomorphism and
ker g = kerg @0. Let T, = {x + g(x),x € Ay}. Clearly that T, < M@®M and MO®M =
Ty@Dy.

In this article by Cy, Dy, g, T, we mean the same concept as stated in the remark above,
[12].

Theorem 2.10: Let M, and M, be two R-modules. then M; is M,-PR-module if and only if
for every R-homomorphism g: M; - M,, Cy, N Ty <p M; @ M,.

Proof: Let M, is M,-PR-module and let g: M; - M, be an R-homomorphism. Since M, is
M,-PR-module, then kerg<p,M; and hence Kkerg=kerg@0. Therefore,
ker g <p M; ®M,. Claim that ker g = C)y, N T,. By the same argument of the proof of
the, [13]. To show that, let (m,0) € ker g, then g(m,0) = (0,0), where m € M. Hence
(m,0) = (m,0) + g(m,0) € Cy, N Ty. Now, let (m,0) € Cy, N Ty, so there exists m; € M
such that (m,0) = (m4,0) + g(m,,0) = (my,0)(0,g(m,)). Since (0,g(my)) € Cy, N
Dy, = 0, then g(m;) = 0. Hence, m =m, and g(m) = g(m,) = 0. Therefore, (m,0) €
ker g. Thus kerg =Cy, N Ty <p M; @ M,.

Conversely, let g:M; - M,be an  R-homomorphism. Since Cu, NTy =
ker g <p M;@M, and kerg < Cy,, then Kkerg=kerg®0 <, M;&0. Therefore
ker g <p M;. Thus M, is M,-PR-module .

Corollary 2.11: An R-module M is PR-module if and only if for every R-
homomorphismg:M - M, Cy N Ty <p MAM.

Proof: Follows from Theorem 2.10, take M = M; = M,.
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Theorem 2.12: Let M, and M, be two R-modules. Then M, is M,-PR-module if and only if
I(CM1 n Tg) = ICy, N IT,, for every R-homomorphism g:M; — M, and finitely generated
ideal I of R.

Proof: Assume that M, is M,-PR-module, then Cy,, N T, <p M; @ M,. Let g: M; - M, be an
R-homomorphism and I be a f.g ideal of R. Hence I(Cy, N Ty) = I(M{ @ M) N (Cyy, N Ty).
It is clear that I(Cy, NTy)cICy, NIT,. But ICy, NIT,c(I(M;@M;) N Cy,)NT, =
I(My@My) N (Cy, NTy) =1(Cy, N T,). Thus ICy, N ITy; = 1(Cpy, N Ty).

Conversely, let g:M; - M, be an R-homomorphism and let /be a f.g of R. Then
I(My@M,;) N (Cy, NTy) = (I(My@M,) N Cy,) N Ty = ICy, N T,. Similarly,

I(My@M,) N (Cy, NTy) = (M @My) NTy) N Cpy, = ITy N Cyy,

becauseCy,, Ty, <p My @M,. Therefore, I(M;@M,) N (Cy, N Ty)ICy, NIT, = 1(Cy, N
T,). So, Cy, N Ty <p M;@M,. Thus M, is M,-PR-module, by Theorem 2.10.

Corollary 2.13: Let M be an R-module, then M is a PR-module if and only if I(Cy, N T,) =
1Cy N ITy, for every R-homomorphism g: M — M and finitely generated ideal I of R.

Proof: Follows from Theorem 2.12, take M = M; = M,,.
Proposition 2.14: Every prime R-module M over a Bezout domain is a PR-module.

Proof: Let g:M — M be an R-homomorphism and let I be a finitely generated ideal of R.
Since R is a Bezout domain, then I = (r) for some r € R. We want to show that r(Cy N
T))=1CynrT, Let0 #x €rCy N1Ty, hence x =ra=rb,a € Cy and b € T;. So r(a —
b) = 0. Assume a # b. Since r € ann(a — b)and M is prime, then r € ann (a) and x =
0 which is a contradiction. Thus a = b and x € r(Cy N Ty). So by Corollary 2.13, M is PR-
module.

Proposition 2.15: Let M; and M, be an R-modules such that for every R-homomorphism
g:M; » My, Cy, + Ty is flat, then M, is an M,-PR-module.

Proof: Let g:M; - M, be an R-homomorphism. Consider the following short exact

sequences

i Ty Cumy
0—>Cy, NTy— Cy, —

—0.
Cym,NTy

Ty Cppy +T,
S3-M9 .
g
Where i,,i, are the inclusion homomorphisms and m,,, are the natural epimorphisms. By

the second isomorphism theorem CCMan = CM;+T9. Since T, <p M;@M, and hence
Mq'lg g
Ty <p Cy, + Ty, by [14]. But Cy, + T4 is flat. Therefore, by [8, Proposition 3.60, p.139],
C Cc Tg .
M1~ ZM09 o flat. Thus Cy NT,; <p Cy, by [11]. But Cy, <p M;@M,, therefore
Cm,NTy Ty 1 1 1

Cu, N Ty <p M; @ M,by [14]. Hence M, is an M,-PR-module, by Theorem 2.10.

iz
0—)Tg - CM1 + Tg

Corollary 2.16: Let M be an R-module such that for every R-homomorphism g:M — M,
Cu + Ty is flat, then M is a PR-module.
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Proof: Follows from Theorem 2.15, take M = M; = M,.

Theorem 2.17: Let M; and M, are flat R-modules, then M; is M,-PR-module if and only if
for every R-homomorphism f: M; — M,, Cy, + Ty is flat.

Proof: Suppose that M, is M,-PR-module. Let I be a f.g ideal of R. Consider the following
short exact sequence

0 Gy, nT, B ey 1,5 Cy, + 1,0,
where f;(x) = (x, —x), for each xe Cy, N Tyand g,(a,b) = a+ b, for eacha €
Cu, and b € Ty,.
Now we construct the following diagram

18f, 1&g
I@(CMl N Tg) — I@(CMl(‘B Tg) — 1®(CM1 + Tg) —0

a g Yy
0—=ICy, N IT, le) 1Cy, @ IT, 3: ICy, + IT; —0,

wheref; (x) = (x, —x), for each x € ICy, NITy and g,(a,b) =a+b, for eacha €

ICy, and b € ITy.

a(r®x) =rx, foreachr € I and x € Cy, N Ty,.

B(r®(a,b)) = (ra,rb), for eachr €l,a € Cy, and b € T,

y(r@(a + b)) =ra+rb, foreachr €1,a € Cy, and b € Ty,

It is easily checked that the diagram is commutative. Since Cy,, T, <p M; @M, and M is flat,
then by [14] Cy, and T, are flat and hence Cy, ® Ty is flat. By [8, proposition 2.58, p.81]
I&(Cy,®Ty) = 1(Cy,®Ty)= 1Cy,®IT,;. Thus g is an isomorphism. Therefore a is an
epimorphism if and only if y is monomorphism [8, proposition 2.72, p.90]. It is early show
that a(I® (Cy, N Ty))= 1(Cy, N Ty). Hence a is onto if and only if M, is M,-PR-module, by
Theorem (2.12). Moreover, y is a monomorphism if and only if I&®(Cy, +T,) = v
(I®(Cy, +T,)) = 1(Cy, + T,). Thus y is monomorphism if and only if Cy, + T, is flat by
[8, Proposition 2.58, p.81].

The converse follows from Proposition 2.15.

Corollary 2.18: Let M be a flat R-module, then M is a PR-module if and only if for every R-
homomorphism g: M - M, Cy + T, is flat.
Proof: Follows from Theorem 2.17, take M = M; = M,,.

3. Characterization of Rings by Means of Pure Rickart Modules
This section study direct summand of PR- modules and provide some kind of
generalization of rings have been constructed and demonstrated in term of PR-modules.

Proposition 3.1: Let M; = K; @K, and M, be an R-modules. If M; is M,-PR-module, then
K; is M,-PR-module.

Proof: Suppose that M; is M,-PR-module. Let g: K; » M, be an R-homomorphism and
P:M; = K, be the projection map. Consider the map gop: M; — M,. Since M; is M,-PR-
module, therefore ker gop <p M,. But
ker(gop) = {x € My; gop(x) = 0}

={a+pf € M;; g(p(a+,8)) =0,a €Ky, B € Ky}

={a+BEM;gla) =0, €K,,B EK,}
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= ker g@K,.
Hence ker g <p M,. But ker g < K;, therefore, ker g <p K; by [14]. Thus K; is PR-module.

Corollary 3.2: Direct summand of PR-module is also PR-module.
Proof: Follows from Proposition 3.1, take M = M; = M,.

Proposition 3.3: Let M = jSM,- be a direct sum of fully invariant submodules M;,V;j € J.
Then M is PR-module if and only if M; is PR-module, Vj € J.

Proof: =) Clear by Corollary 3.2.

Conversely, let g:M — M be R-homomorphism. To show that ker g <p M. Since M; be a
fully invariant submodule, Vj € J then we can consider g|y;: M; - M;,Vj € J. Clearly that
ker g|y; = kerg N M;vj € ].

Claim that ker g= @, (kerg|M]_). By the same argument of the proof of the, [15].

To show that, let x € kerg and let x = Zjejxj, where x; € M;, for eachj € ] and x; #
0 for at most a finite number of j€]. Hence g(x)=g(Tje; %) =2je; 9(x) = 0.
Thus g(x;) = 0,j €] and hence x; € kerg N M;, Vj € ] . Therefore, x € ®jc; (kergn
Mj) = Djej (ker g|u)). Thus ker g = @), (ker g|u;). But M; be a PR-module, for each j €
J. Therefore, kerg|M]. <p M; and hence ker g <p M. Thus M is PR-module.

Proposition 3.4: Let M; not flat R-module. Then there exists a free R-module F such that F
is not M;-PR-module.

Proof: Assume that M, is not flat R-module. Then there exists a free R-module F and an
eipmorphism g: F — M,, by [11, Corollary 4.4.4, p.89]. Claim that ker g is not pure of F. To
illustrate that, assume not. Consider the short exact sequence

0—>kerg—l>F£>M1 - 0,
where i is the inclusion map. By [8, Proposition 3.60, p. 139], so M, is flat which is
contradiction. Therefore, ker g is not pure of F. Thus F is not M;-PR-module.

Proposition 3.5: Let M; be an R-module. The following conditions are equivalent:

1- M, is PR-module;

2- For every K; < My, every direct summand K, of M;is K;-PR-module;

3- For every pair of direct summands K; and K, of M; and any g € Hom(M,, K;). The kernel
of the restricted map g|, is a pure of K.

Proof: (1) = (2) Let K, be a direct summand of M;, K; < M; and g,:K, —» K, be an R-
homomorphisem. Let M; = K, @ K5, for some K; < M. Define g: M; —» M,, by
_ gl(x)' lfx € KZ

g(")_{o, if x € K,
Clearly, g is an R-homomorphisem. Since M, is a PR-module, so ker g <, M;.
Now kerg ={a+ B € M;; gla+B)=0,a €EK,, B € K3}

={a+B€eM; g(a)=0, a €K, B €K;}=kerg, @K;.

Hence ker g; <p M;. But ker g,  K,, therefore, ker g; <p K,. Thus K, is K;-PR-module.
(2) = (3) Let K; and K, be a direct summand of M; and g: M; — K; be an R-homomorphism.
Since K, is K;-PR-module and g|,: K, — K; be an R-homomorphism, then ker glx, <p K.
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(3) = (1) Clear (taking K; = K, = M;, M; is M;-PR-module and hence M; is a PR-module).

Proposition 3.6: Let M; be a pure simple R-module and let M, be an R-module. If M; is M,-
PR-module, then either

1- Hom(M,, M,) = 0 or,

2- Every nonzero R-homomorphism from M; to M, is a monomorphism.

Proof: Assume that Hom(M;, M,) # 0 and let g: M; —» M, be a non-zero R-homomorphism.
Since M, is M,-PR-module, then ker g <p M;. But M, is pure simple, therefore ker g = {0}.
Thus g is a monomorphism.

Corollary 3.7: Let M, be a pure simple R-module and let M, be an R-module such that
Hom(M;,M;) # 0. If M; is M,-PR-module, then M; is a Quasi Dedekind module. In
particular if M, is a PR-module, then M; is Quasi Dedekind.

Proof: By Proposition 3.6, there is a monomorphism g: M; = M,. Assume M; is not Quasi
Dedekind R-module. Then there exists a nonzero homomorphism g;: M; — M; such that
ker g, # 0. Since g is a monomorphism, then ker(gog,) = ker g; # 0. Since M, is M,-PR-
module, then ker(gog,) <p M,. But M, is pure simple, therefore, ker g; = M. Thus g, = 0,
which is a contradiction. Thus M, is a Quasi Dedekind.

Proposition 3.8: Let A,B,C be an R-modules. If A is C-PR-module and g: A —» B be an
epimorphism, then B is C-PR-module.

Proof: Let P be the class of pure submodules, see [16] and Iet_ g1:B = C be an R-

. . g
homomorphisem. Consider the short exact sequence 0 - ker g, S5BSIm g1~ 0.

To show that g, is P-epimorphism. Let 4588 m g1 be an R-homomorphisem and

Im g, < C. Since A is C-PR-module, therefore, ker g;0g <p A. Hence construct the short

exact sequence 0 - ker g,0g S54%%m gi0g = 0 € P.

Since g,0g is P-epimorphism, then g, is P-epimorphism.

Mq

Corollary 3.9: Let M; and M, be R-modules. If M, is M,-PR-module, ~ is M,-PR-module,
forevery N < M;.

Proof: Follows by Proposition 3.8, taking M; = A and % = B.

Proposition 3.10: Let M; be an R-module, if R is M;-PR-module, then every cyclic
submodule of M, is flat. In particular if R is a PR-ring, then every principal ideal is flat, i.e. R
is a principal flat ring PF-ring.

Proof: Let M; be an R-module, R be M;-PR-module and let m € M;. Now consider the

following short exact sequence 0 - kerf SRERm - 0,

where i is the inclusion map and g is a map define by g(r) = rm,Vr € R. Let i,: Rm — M,
be the inclusion map. Since R is M;-PR-module and i,og: R = M;, then ker(i,og) <p R.
But i, is a monomorphism, therefore ker g = ker(i,og). Thus ker g <, R. But R is a flat R-
module, therefore Rm is flat by [8, Proposition 3.60].
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Theorem 3.11: Let R be a ring. Then R is flat ring if and only if every flat R-module are
relatively PR-module to any flat R-module.

Proof: Suppose that R is flat ring. Let M; and M, be a flat R-modules and let g: M; - M, be
R-homomorphism. Since M;® M, is flat, then by [14] Cy,, + T, is flat submodule of M; @ M,.
Therefore M, is M,-PR-module by Theorem 2.17.

For the opposite. Suppose that M;be a flat R-module and M, < M;. Then there exists a free
R-module F and an epimorphisem g: F — M,, [11, Corollary 4.4.4, p.89]. Let i: M, — M, be
inclusion map. Consider the map iog: F — M;. Since F is flat, then by our assumption F is
M;-PR-module. Thus keriog <, F .But i is a monomorphism, so keriog = ker g <, F .But
F is flat, therefore M, is flat by [8, Proposition 3.60].

Theorem 3.12: Let R be a ring. The following statements are equivalent:

1- R is flat ring;

2- Every finitely generated flat R-module are relatively PR-module to any flat R-module;
3- Every finitely generated submodule of a finitely generated flat R-module is flat.

Proof: (1) = (2) Follows by Theorem 3.11.

(2) = (1) Let I be a finitely generated ideal in R. Then there exists a finitely generated free R-
module F and an epimorphism g: F — I, [11, Corollary 4.4.4, p.89]. Let i:] — R be the
inclusion map. Consider the map iog: F — R. Since F is a f.g flat R-module, then F is R-PR-
module by (2) and hence keriog <p F. Since i is monomorphism, then keriog =
ker g <p F.But F is flat, therefore, I is flat by [8, Proposition 3.60, p.139].

(2) = (3) Since R is flat ring, then (3) hold by [7].

(3) = (2) Let M; be a finitely generated flat module and let g:M; — M; be an R-
homomorphism. Let K be a finitely generated submodule of C,,, + T,. Hence K is a finitely
generated submodule of M;@M,. But M, is flat by (3), therefore Cy, + T, is flat by [8,
Proposition 3.60, p.139] and hence M; is PR-module by Theorem 2.17. Thus M; is M;-PR-
module.

(3) = (1) Clear (3—2-1).

Theorem 3.13: Let R be a ring. The following statements are equivalent:

1- R is flat ring;

2- Every projective R-module are relatively PR-module to any flat R-module;
3- Every submodule of a projective R-module is flat.

Proof: (1) = (2) Let M, be a projective R-module and hence flat and let M, be a flat R-
module. Thus by Theorem 3.1 M; is M,-PR-module.

(2) = (1) Suppose that I be an ideal in R. There is a free R-module F and an epimorohism
g:F = 1, [11, Corollary 4.4.4, p.89]. Let i:1 — R be the inclusion map. Consider the map
iog:F - R. Since F is projective, then F is R-PR-module by (2). Hence kerg =
keriog <p F. Therefore I is flat by [8, Proposition 3.60, p.139].

(2) = (3) Assume that M, is a projective R-module and let K < M;. There is a free R-module
F and an epimorphism g: F — K, [11, Corollary 4.4.4, p.89]. Let i: K — M; be the inclusion
map. Consider the map iog: F — M,. Since F is projective, then F is M;-PR-module by (2).
Therefore keriog = ker g <p F. Thus K is flat by [8, Proposition 3.60, p.139].

(3) = (2) Suppose that M; is a projective R-module, then M; @M, is projective and let
g:M; —» M, be an R-homomorphism. Let Cy, + T, < M; @M, then by (3) Cy, + Ty is flat.
Therefore by Theorem 2.7, M; is PR-module and hence M, is M;-PR-module.
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(3) = (1) Clear (3—>2-1).

Theorem 3.14: R is flat ring if and only if R@R is R-PR-module.

Proof: Suppose that R is flat ring, then R@R is R-PR-module Theorem 3.11.

For the opposite, suppose that R@R is R-PR-module. Let I = R,;; + R, be a two generated
ideal in R. Define g:R@&R — I by g(ry,1,) = rya, + r,a,,Vry, 1, € R. It is obvious that g is
an epimorphism. Let i: I — R be the inclusion map. Consider the map iog: R@R — R. Since
R@R is R-PR-module, then ker g = keriog <, R@R. Therefore I is flat by [8, Proposition
3.60, p.139] and hence by [17] every finitely generated ideal in R is flat. Thus R is flat ring.
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