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Abstract 

     This paper focuses on the study of pure Rickart modules (or PR-modules for 

short), which are a class of modules over a commutative ring with identity. The 

main objective is to investigate the properties and characterizations of these 

modules, as well as their relationship with other classes of modules such as free, 

projective, and flat modules. This paper also explores the connections between PR-

modules and various algebraic structures such as rings. The results obtained in this 

study provide a deeper understanding of the structure and behavior of PR-modules, 

which can have important applications in algebraic geometry, representation theory, 

and other areas of mathematics. Some results about PR-module have been 

investigated in this paper, for example we demonstrate a module 𝑀 is PR-module if 

and only if for every 𝑔 ∈ 𝐸𝑛𝑑(𝑀), 𝐶𝑀 ∩ 𝑇𝑔 is pure submodule of 𝑀 𝑀 (or 𝐶𝑀 ∩

𝑇𝑔  ≤𝑃 𝑀 𝑀 for short). Also, some kind of generalization of these rings have been 

constructed and demonstrated in term of PR-modules. 

 

Keywords: Pure Rickart modules, Direct summand, Kernel of endomorphism, pure 

submodules, flat modules. 

 

 مقاسات ريكارتية النقية 
 

 حسن سبتي الرديني ، بهار حمد البحراني 
 قسم الرياضيات ،كلية العلوم ,جامعة بغداد ,بغداد ,العراق 

 
 الخلاصة 

)أو         نقية  ريكارتيه  مقاسات  دراسة  على  البحث  هذا  من    PR-مقاساتيركز  فئة  وهي   ، باختصار( 
على حلقة تبادلية ذات عنصر محايد. الهدف الرئيسي هو التحقيق في خصائص وتوصيفات    مقاسات المعرفةال

هذه المقاسات ، بالإضافة إلى علاقتها بفئات أخرى من المقاسات مثل المقاسات الحرة والإسقاطية والمسطحة.  
يستكشف البحث أيضًا الروابط بين المقاسات الريكارتيه النقية والتراكيب الجبرية المختلفة مثل الحلقات. توفر  

مقاسات ريكارتيه نقية، والتي يمكن  الالنتائج التي تم الحصول عليها في هذه الدراسة فهمًا أعمق لبنية وسلوك  
تم   الرياضيات.  من  أخرى  ومجالات  التمثيل   ونظرية   ، الجبرية  الهندسة  في  مهمة  تطبيقات  لها  يكون  أن 

هو    𝑀، على سبيل المثال نوضح أن المقاس    PR-التحقيق في هذه الورقة في بعض النتائج حول مقاسات
𝑔إذا وفقط إذا كان لكل    PR-مقاس ∈ 𝐸𝑛𝑑(𝑀)    فان 𝐶𝑀 ∩ 𝑇𝑔  ≤𝑃 𝑀 𝑀  أيضًا تم إنشاء نوع من .

 .  PR-الاعمام هذه الحلقات وإثباتها من خلال مقاسات
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1. INTRODUCTION 

     PR-modules have been extensively studied in the field of module theory and have many 

interesting properties. They also have applications in other areas of mathematics, such as 

commutative algebra and algebraic geometry. The study of PR-modules has led to the 

development of several important concepts and techniques in module theory, including the 

use of torsion theories to classify certain classes of modules. The paper on PR-modules has 

focused on several different areas, including their structure and classification, their 

connections to other classes of modules, and their applications in various fields. We introduce 

the definition for PR-module as follows; if for every 𝑓 ∈ 𝐸𝑛𝑑(𝑀), 𝑡ℎ𝑒𝑛 𝐾𝑒𝑟 𝑓 ≤𝑃 𝑀, where 

𝑀 is a module. In particular, if 𝑀 = 𝑅, then 𝑅 is called PR-ring if 𝑅 is pure Rickart as 𝑅-

module. In the other side, PR-ring can be obtained from 𝑎𝑛𝑛(𝑎), 𝑎 ∈ 𝑅 is pure ideal of 𝑅, see 

[1] . Additionally, if we have two modules say 𝑀1, 𝑀2 are 𝑅-modules, then 𝑀1 is an 𝑀2-PR-

module (or relatively PR-module to 𝑀2), if satisfy the following condition, for every 𝑅-

homomorphism 𝑓:𝑀1 → 𝑀2, ker 𝑓 ≤𝑃 𝑀1, see [1]. Recall that an 𝑅-module 𝑀 is called a 

prime 𝑅-module if 𝑎𝑛𝑛(𝑥) = 𝑎𝑛𝑛(𝑦), for every non-zero elements 𝑥 𝑎𝑛𝑑 𝑦 in 𝑀, see [2]. Let 

us recall that a ring 𝑅 is called a Bezout ring if every finitely generated ideal is principal, see 

[3]. Recall that an 𝑅-module 𝑀 is called a Quasi Dedekind 𝑅-module if every non-zero 

endomorphism of 𝑀 is a monomorphisem, see [4]. Recall that a ring 𝑅 is a pure simple if 0 

and 𝑅 are the only pure ideals of 𝑅, see [5]. Recall that a ring 𝑅 is a 𝑃𝐹-ring if every principal 

ideal is a flat ideal in 𝑅, see [6]. Recall that a ring 𝑅 is a flat ring if every finitely generated 

ideal in 𝑅 is flat, equivalently, every ideal in 𝑅 is flat, see [7]. Recall that an 𝑅-module 𝑀 is 

called a flat module, if for every short exact sequence of 𝑅-module: 0 → 𝐴 → 𝐵 → 𝐶 → 0  the 

sequence 0 → 𝐴𝑀 → 𝐵𝑀 → 𝐶𝑀 → 0  is also exact, see [8]. Let 𝑀 be 𝑅-module. Recall 

that 𝑍(𝑀) = {𝑥 ∈ 𝑀 ∶ 𝑎𝑛𝑛(𝑥) ≤𝑒 𝑅} is called singular submodule of 𝑀. If 𝑍(𝑀) = 𝑀, then 

𝑀 is called the singular module. If 𝑍(𝑀) = 0, then 𝑀 is called the nonsingular module, see 

[9]. Recall that a submodule 𝑁 of an 𝑅-module 𝑀 is called a fully invariant submodule if for 

every endomorphism 𝑓:𝑀 → 𝑀, 𝑓(𝑁)  𝑁, see [10]. 

 

     In this article, we provide some findings on the PR-modules. 

In section 2, we provide a description of PR-modules. We also research relation between flat 

and PR-modules. For instance, we demonstrate that, if 𝑀 is flat 𝑅-module, then 𝑀 is a PR-

module if and only if for every 𝑅-homomorphism 𝑔:𝑀 → 𝑀, 𝐶𝑀 + 𝑇𝑔 is flat, see Corollary 

2.18. 

 

     In Section 3, we characterize specific ring classes in terms of the PR-modules. For 

instance, we illustrate that a ring 𝑅 is flat if and only if every projective 𝑅-modules are 

relatively PR-module to any flat 𝑅-module, see Theorem 3.13. 

Everywhere else in this article, 𝑅 represent ring with identity and 𝑀 is a unital left 𝑅-module. 

For a left module 𝑀, 𝐸𝑛𝑑(𝑀) that will mean the endomorphism ring of 𝑀. The observes 𝐾 ≤
𝑀, 𝐾 ≤𝑃 𝑀 mean that 𝐾 is a submodule, a pure submodule of 𝑀. 

 

2. Pure Rickart Modules by Means of Flat Module 

     This section provides a characterization for the PR-modules by means of flat module. We 

illustrate that a flat module need not be a PR-module and the converse is not true in general, 

see Remark 2.5.  

 

Proposition 2.1: Let 𝑀1and 𝑀2 be 𝑅-modules such that ∀𝑔 ∈ 𝐻𝑜𝑚(𝑀1,𝑀2), 𝐼𝑚 𝑔 is flat, 

then 𝑀1 is 𝑀2-PR-module. 

Proof: Let 𝑔:𝑀1 → 𝑀2 be an 𝑅-homomorphism. We want to show that ker 𝑔 ≤𝑃 𝑀1. 
Consider the short exact sequence  
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                                                       0 → ker 𝑔
𝑖
→𝑀1

𝑔
→ 𝐼𝑚 𝑔 → 0. 

Since 𝐼𝑚 𝑔 is flat, therefore, ker 𝑔 ≤𝑃 𝑀1, by [8, Proposition 3.67, p. 147]. 

 

Proposition 2.2: Let 𝑀1 be a flat 𝑅-module and 𝑀2 be an 𝑅-module, then 𝑀1 is 𝑀2-PR-

module if and only if for every 𝑔:𝑀1 → 𝑀2 be an 𝑅-homomorphism, 𝐼𝑚 𝑔 is flat.  

Proof: Let 𝑀1 is 𝑀2-PR-module and let 𝑔:𝑀1 → 𝑀2 be an 𝑅-homomorphism. We want to 

show that 𝐼𝑚 𝑔 is flat. Consider the shirt exact sequence  

                                                        0 → ker 𝑔
𝑖
→𝑀1

𝑔
→ 𝐼𝑚 𝑔 → 0 

Since 𝑀1 is 𝑀2-PR-module, therefore, ker 𝑔 ≤𝑃 𝑀1. Since 𝑀1 is flat by our assumposion. 

Thus 𝐼𝑚 𝑔 is flat, by [8, Proposition 3.60, p.139]. 

The converse follows by Proposition 2.1. 

 

Corollary 2.3: Let 𝑀 be a free (projective) 𝑅-module, then 𝑀 is PR-module if and only if 

∀𝑔 ∈ 𝐻𝑜𝑚(𝑀,𝑀), 𝐼𝑚 𝑔 is flat. 

 

Proof: Let 𝑀 be a free (projective) 𝑅-module and hence 𝑀 is flat and let 𝑔:𝑀 → 𝑀 be an 𝑅-

homomorphism. By Proposition 2.2, the result follows. 

The converse follows by Proposition 2.1. 

 

Corollary 2.4: Let 𝑅 be a pure simple ring. If 𝑅 is PR-ring, then 𝑅 is integral domain  (𝐼𝐷). 
 

Proof: Let 𝑅𝑎 be a principle ideal in R. To show that 𝑅𝑎 is flat. Let 𝑔: 𝑅 → 𝑅𝑎 be a map 

define by 𝑔(𝑟) = 𝑟𝑎, ∀𝑟 ∈ 𝑅. It’s clear that 𝑔 epimorphism. Consider the short exact 

sequence 

                                                              0 → ker 𝑔
𝑖
→ 𝑅

𝑔
→ 𝑅𝑎 → 0    

Since 𝑅 is PR-ring, then 𝑅𝑎 is flat, by Corollary 2.3 and since 𝑅 is pure simple and PF-ring. 

Thus 𝑅 is 𝐼𝐷, by [5]. 

 

Remark 2.5: A flat module need not be a PR-module. Also, the converse is not true. For 

example, the module 𝑍4 as 𝑍4-module. Since 𝑍4 is free, therefore 𝑍4 is flat 𝑍4-module. Now 

define a map 𝑔: 𝑍4 → 𝑍4 by 𝑔(𝑥) = 2𝑥,   ∀𝑥 ∈ 𝑍4. Since ker 𝑔 = {0̅, 2̅} is not pure in 𝑍4, 
therefore, 𝑍4 is not PR-module. For the converse, the module 𝑍6 as 𝑍-module. Since 6𝑍6 = 0, 

then 𝑍6 is not torsion free. Therefore, 𝑍6 is not flat. But 𝑍6 is semisimple, so 𝑍6 is PR-

module. 

 

Proposition 2.6: Let 𝑅 a Bezout domain and let 𝑀2 be a torsion free (flat, projective) 𝑅-

module, then every 𝑅-module 𝑀1 is 𝑀2-PR-module. 

 

Proof: Let 𝑀1 be an 𝑅-module and let  𝑔:𝑀1 → 𝑀2 be an 𝑅-homomorphism. Consider the 

short exact sequence                                     0 → ker 𝑔
𝑖
→𝑀1

𝑔
→ 𝐼𝑚 𝑔 → 0 

Since 𝑀2 is a torsion free and 𝐼𝑚 𝑔 ≤ 𝑀2, therefore 𝐼𝑚 𝑔 is torsion free. But 𝑅 is Bezout 

domain, then 𝐼𝑚 𝑔 is flat, by [3, Corollary 2.2. 3.1, p.23]. Therefore ker 𝑔 ≤𝑃 𝑀1, by [11]. 

Thus 𝑀1 is 𝑀2-PR-module. 

 

Proposition 2.7: Let 𝑅 a Bezout domain and let 𝑀2 be a nonsingular 𝑅-module, then every 𝑅-

module 𝑀1 is 𝑀2-PR-module. 
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Proof: Let 𝑀1 be an 𝑅-module and let  𝑔:𝑀1 → 𝑀2 be an 𝑅-homomorphism. Consider the 

short exact sequence                                     0 → ker 𝑔
𝑖
→𝑀1

𝑔
→ 𝐼𝑚 𝑔 → 0. 

Since 𝑅 is 𝐼𝐷, therefore, 𝑇(𝑀2) = 𝑍(𝑀2) = 0 and hence 𝑀2 is torsion free. But 𝐼𝑚 𝑔 ≤ 𝑀2, 
then 𝐼𝑚 𝑔 is torsion free. Since 𝑅 is Bezout domain, therefore 𝐼𝑚 𝑔 is flat, by [3, Corollary 

2.2. 3.1, p.23]. Hence ker 𝑔 ≤𝑃 𝑀1. Thus 𝑀1 is 𝑀2-PR-module. 

 

Proposition 2.8: Let 𝑅 be 𝐼𝐷 and let 𝑀2 be a singular 𝑅-module. Then for every flat  𝑅-

module 𝑀1, either 𝐻𝑜𝑚(𝑀1, 𝑀2) = 0 or 𝑀1 is not 𝑀2-PR-module. 

 

Proof: Let 𝐻𝑜𝑚(𝑀1, 𝑀2) ≠ 0. To show that 𝑀1 is not 𝑀2-PR-module. By contradiction 

assume that 𝑀1 is 𝑀2-PR-module and let 𝑔:𝑀1 → 𝑀2 be an 𝑅-homomorphism, then 

ker 𝑔 ≤𝑃 𝑀1. Consider the short exact sequence  

                                                            0 → ker 𝑔
𝑖
→𝑀1

𝑔
→ 𝐼𝑚 𝑔 → 0 

Hence 𝐼𝑚 𝑔 is flat. Since 𝑅 be 𝐼𝐷, then 𝐼𝑚 𝑔 is torsion free, by [8, Proposition 3.49, p.134]. 

By the first isomorphism theorem 
𝑀1

ker𝑔
≅ 𝐼𝑚 𝑔, so 

𝑀1

ker𝑔
 is torsion free. Since 𝑀2 be a singular 

𝑅-module, then 𝑇(𝑀2) = 𝑍(𝑀2) = 𝑀2 and hence 𝑀2 is torsion. But 𝐼𝑚 𝑔 ≤ 𝑀2, then 𝐼𝑚 𝑔 is 

torsion. Therefore, 𝐼𝑚 𝑔 = 0 which is a contradiction. Thus 𝑀1 is not 𝑀2-PR-module.  

 

Remark 2.9: Let 𝑀 be an 𝑅-module and 𝑔:𝑀 → 𝑀 be an 𝑅-homomorphisem. 

Let 𝐶𝑀 = 𝑀 0, 𝐷𝑀 = 0 𝑀 and 𝑔̅: 𝐶𝑀 → 𝐷𝑀 be a map define by 𝑔̅(𝑚, 0) = (0, 𝑔(𝑚)),         
for every 𝑚 ∈ 𝑀. It is clear that 𝑀 𝑀 = 𝐶𝑀 𝐷𝑀, 𝑔̅ is an 𝑅-homomorphism and                 

ker 𝑔̅ = ker 𝑔 0. Let 𝑇𝑔 = {𝑥 + 𝑔̅(𝑥), 𝑥 ∈ 𝐴𝑀}. Clearly that 𝑇𝑔 ≤ 𝑀 𝑀 and 𝑀 𝑀 =

𝑇𝑔 𝐷𝑀. 

   In this article by 𝐶𝑀, 𝐷𝑀,  𝑔̅, 𝑇𝑔  we mean the same concept as stated in the remark above, 

[12]. 

 

Theorem 2.10: Let 𝑀1 𝑎𝑛𝑑 𝑀2 be two 𝑅-modules. then 𝑀1 is 𝑀2-PR-module if and only if 

for every R-homomorphism 𝑔:𝑀1 → 𝑀2, 𝐶𝑀1 ∩ 𝑇𝑔 ≤𝑃 𝑀1 𝑀2. 

 

Proof: Let 𝑀1 is 𝑀2-PR-module and let 𝑔:𝑀1 → 𝑀2 be an 𝑅-homomorphism. Since 𝑀1 is 

𝑀2-PR-module, then ker 𝑔 ≤𝑃𝑀1 and hence ker 𝑔̅ = ker 𝑔 0. Therefore, 

ker 𝑔̅ ≤𝑃 𝑀1 𝑀2.            Claim that ker 𝑔̅ =𝐶𝑀1 ∩ 𝑇𝑔. By the same argument of the proof of 

the, [13]. To show that, let (𝑚, 0) ∈ ker 𝑔̅, then 𝑔̅(𝑚, 0) = (0,0), where 𝑚 ∈ 𝑀. Hence 
(𝑚, 0) = (𝑚, 0) + 𝑔̅(𝑚, 0) ∈ 𝐶𝑀1 ∩ 𝑇𝑔. Now, let (𝑚, 0) ∈ 𝐶𝑀1 ∩ 𝑇𝑔, so there exists 𝑚1 ∈ 𝑀 

such that (𝑚, 0) = (𝑚1, 0) + 𝑔̅(𝑚1, 0) = (𝑚1, 0)(0, 𝑔(𝑚1)). Since (0, 𝑔(𝑚1)) ∈ 𝐶𝑀1 ∩

𝐷𝑀2 = 0, then 𝑔(𝑚1) = 0. Hence, 𝑚 = 𝑚1 and 𝑔(𝑚) = 𝑔(𝑚1) = 0. Therefore, (𝑚, 0) ∈

ker 𝑔̅. Thus  ker 𝑔̅ =𝐶𝑀1 ∩ 𝑇𝑔 ≤𝑃 𝑀1 𝑀2.    

Conversely, let 𝑔:𝑀1 → 𝑀2 be an 𝑅-homomorphism. Since 𝐶𝑀1 ∩ 𝑇𝑔 =

𝑘𝑒𝑟 𝑔̅ ≤𝑃 𝑀1 𝑀2 and ker 𝑔̅ ≤ 𝐶𝑀1, then ker 𝑔̅ = ker 𝑔 0 ≤𝑃 𝑀1 0. Therefore 

ker 𝑔 ≤𝑃 𝑀1. Thus 𝑀1 is 𝑀2-PR-module . 

 

Corollary 2.11: An 𝑅-module 𝑀 is PR-module if and only if for every R-

homomorphism 𝑔:𝑀 → 𝑀, 𝐶𝑀 ∩ 𝑇𝑔 ≤𝑃 𝑀 𝑀. 

 

Proof:  Follows from Theorem 2.10, take 𝑀 = 𝑀1 = 𝑀2. 
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Theorem 2.12: Let 𝑀1 𝑎𝑛𝑑 𝑀2 be two 𝑅-modules. Then 𝑀1 is 𝑀2-PR-module if and only if 

𝐼(𝐶𝑀1 ∩ 𝑇𝑔) = 𝐼𝐶𝑀1 ∩ 𝐼𝑇𝑔, for every 𝑅-homomorphism 𝑔:𝑀1 → 𝑀2 and finitely generated 

ideal 𝐼 of 𝑅.  

 

Proof: Assume that 𝑀1 is 𝑀2-PR-module, then 𝐶𝑀1 ∩ 𝑇𝑔 ≤𝑃 𝑀1 𝑀2. Let 𝑔:𝑀1 → 𝑀2 be an 

𝑅-homomorphism and 𝐼 be a f.g ideal of 𝑅. Hence 𝐼(𝐶𝑀1 ∩ 𝑇𝑔) = 𝐼( 𝑀1 𝑀2) ∩ (𝐶𝑀1 ∩ 𝑇𝑔).               

It is clear that 𝐼(𝐶𝑀1 ∩ 𝑇𝑔) 𝐼𝐶𝑀1 ∩ 𝐼𝑇𝑔. But 𝐼𝐶𝑀1 ∩ 𝐼𝑇𝑔 (𝐼( 𝑀1 𝑀2) ∩ 𝐶𝑀1) ∩ 𝑇𝑔 =

𝐼( 𝑀1 𝑀2) ∩ (𝐶𝑀1 ∩ 𝑇𝑔) = 𝐼(𝐶𝑀1 ∩ 𝑇𝑔). Thus 𝐼𝐶𝑀1 ∩ 𝐼𝑇𝑔 = 𝐼(𝐶𝑀1 ∩ 𝑇𝑔).  

Conversely, let 𝑔:𝑀1 → 𝑀2 be an 𝑅-homomorphism and let 𝐼 be a f.g of 𝑅. Then 

𝐼( 𝑀1 𝑀2) ∩ (𝐶𝑀1 ∩ 𝑇𝑔) = (𝐼( 𝑀1 𝑀2) ∩ 𝐶𝑀1) ∩ 𝑇𝑔 = 𝐼𝐶𝑀1 ∩ 𝑇𝑔. Similarly,  

 𝐼( 𝑀1 𝑀2) ∩ (𝐶𝑀1 ∩ 𝑇𝑔) = (𝐼( 𝑀1 𝑀2) ∩ 𝑇𝑔) ∩ 𝐶𝑀1 = 𝐼𝑇𝑔 ∩ 𝐶𝑀1  

because𝐶𝑀1 , 𝑇𝑔  ≤𝑃 𝑀1 𝑀2. Therefore, 𝐼( 𝑀1 𝑀2) ∩ (𝐶𝑀1 ∩ 𝑇𝑔) 𝐼𝐶𝑀1 ∩ 𝐼𝑇𝑔 = 𝐼(𝐶𝑀1 ∩

𝑇𝑔). So, 𝐶𝑀1 ∩ 𝑇𝑔 ≤𝑃  𝑀1 𝑀2. Thus 𝑀1 is 𝑀2-PR-module, by Theorem 2.10. 

 

Corollary 2.13: Let 𝑀 be an 𝑅-module, then 𝑀 is a PR-module if and only if 𝐼(𝐶𝑀 ∩ 𝑇𝑔) =

𝐼𝐶𝑀 ∩ 𝐼𝑇𝑔, for every 𝑅-homomorphism 𝑔:𝑀 → 𝑀 and finitely generated ideal 𝐼 of 𝑅. 

 

Proof: Follows from Theorem 2.12, take 𝑀 = 𝑀1 = 𝑀2. 

 

Proposition 2.14: Every prime 𝑅-module 𝑀 over a Bezout domain is a PR-module. 

 

Proof: Let 𝑔:𝑀 → 𝑀 be an 𝑅-homomorphism and let 𝐼 be a finitely generated ideal of 𝑅. 

Since 𝑅 is a Bezout domain, then 𝐼 = (𝑟) for some 𝑟 ∈ 𝑅. We want to show that 𝑟(𝐶𝑀 ∩
𝑇𝑔) = 𝑟𝐶𝑀 ∩ 𝑟𝑇𝑔. Let 0 ≠ 𝑥 ∈ 𝑟𝐶𝑀 ∩ 𝑟𝑇𝑔, hence 𝑥 = 𝑟𝑎 = 𝑟𝑏, 𝑎 ∈ 𝐶𝑀 and 𝑏 ∈ 𝑇𝑔. So 𝑟(𝑎 −

𝑏) = 0. Assume 𝑎 ≠ 𝑏. Since 𝑟 ∈ 𝑎𝑛𝑛(𝑎 − 𝑏) and 𝑀 is prime, then 𝑟 ∈ 𝑎𝑛𝑛 (𝑎) 𝑎𝑛𝑑 𝑥 =
0 which is a contradiction. Thus 𝑎 = 𝑏 𝑎𝑛𝑑 𝑥 ∈ 𝑟(𝐶𝑀 ∩ 𝑇𝑔). So by Corollary 2.13, 𝑀 is PR-

module. 

 

Proposition 2.15: Let 𝑀1 and 𝑀2 be an 𝑅-modules such that for every 𝑅-homomorphism 

𝑔:𝑀1 → 𝑀2,  𝐶𝑀1 + 𝑇𝑔 is flat, then 𝑀1 is an 𝑀2-PR-module. 

 

Proof: Let 𝑔:𝑀1 → 𝑀2 be an 𝑅-homomorphism. Consider the following short exact 

sequences 

                                                  0→ 𝐶𝑀1 ∩ 𝑇𝑔  

𝑖1
→ 𝐶𝑀1

𝜋1
→ 

𝐶𝑀1

𝐶𝑀1∩𝑇𝑔
 →0. 

                                                  0→𝑇𝑔  
𝑖2
→ 𝐶𝑀1 + 𝑇𝑔 

𝜋2
→ 
𝐶𝑀1+𝑇𝑔

𝑇𝑔
 →0. 

Where 𝑖1, 𝑖2 are the inclusion homomorphisms and 𝜋1, 𝜋2 are the natural epimorphisms. By 

the second isomorphism theorem 
𝐶𝑀1

𝐶𝑀1∩𝑇𝑔
  

𝐶𝑀1+𝑇𝑔

𝑇𝑔
. Since 𝑇𝑔 ≤𝑃 𝑀1 𝑀2 and hence 

𝑇𝑔 ≤𝑃 𝐶𝑀1 + 𝑇𝑔, by [14]. But 𝐶𝑀1 + 𝑇𝑔 is flat.  Therefore,  by [8, Proposition 3.60, p.139], 
𝐶𝑀1

𝐶𝑀1∩𝑇𝑔
   

𝐶𝑀1+𝑇𝑔

𝑇𝑔
 is flat. Thus 𝐶𝑀1 ∩ 𝑇𝑔 ≤𝑃 𝐶𝑀1 by [11]. But 𝐶𝑀1 ≤𝑃 𝑀1 𝑀2, therefore 

𝐶𝑀1 ∩ 𝑇𝑔 ≤𝑃 𝑀1 𝑀2by [14]. Hence 𝑀1 is an 𝑀2-PR-module, by Theorem 2.10.  

 

Corollary 2.16: Let 𝑀 be an 𝑅-module such that for every 𝑅-homomorphism 𝑔:𝑀 → 𝑀,  
𝐶𝑀 + 𝑇𝑔 is flat, then 𝑀 is a PR-module. 
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Proof: Follows from Theorem 2.15, take 𝑀 = 𝑀1 = 𝑀2. 

 

Theorem 2.17: Let 𝑀1 and 𝑀2 are flat 𝑅-modules, then 𝑀1 is 𝑀2-PR-module if and only if 

for every 𝑅-homomorphism 𝑓:𝑀1 → 𝑀2, 𝐶𝑀1 + 𝑇𝑔 is flat. 

 

Proof: Suppose that 𝑀1 is  𝑀2-PR-module. Let 𝐼 be a f.g ideal of 𝑅. Consider the following 

short exact sequence 

                                            0→ 𝐶𝑀1 ∩ 𝑇𝑔
𝑓1
→ 𝐶𝑀 𝑇𝑔

𝑔1
→ 𝐶𝑀1 + 𝑇𝑔→0, 

where 𝑓1(𝑥) = (𝑥,−𝑥), 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 𝐶𝑀1 ∩ 𝑇𝑔𝑎𝑛𝑑 𝑔1(𝑎, 𝑏) = 𝑎 + 𝑏, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎 ∈

𝐶𝑀1  𝑎𝑛𝑑 𝑏 ∈ 𝑇𝑔.  

Now we construct the following diagram  

                             𝐼 (𝐶𝑀1 ∩ 𝑇𝑔) 
𝐼𝑓1
→    𝐼 (𝐶𝑀1 𝑇𝑔) 

𝐼𝑔1
→    𝐼 (𝐶𝑀1 + 𝑇𝑔) →0    

                                          𝛼                   𝛽                    𝛾 

                                     0→𝐼𝐶𝑀1 ∩ 𝐼𝑇𝑔 
𝑓̅1
→ 𝐼𝐶𝑀1 𝐼𝑇𝑔 𝑔̅1

→ 𝐼𝐶𝑀1 + 𝐼𝑇𝑔 →0, 

where𝑓1̅(𝑥) = (𝑥,−𝑥), 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝐼𝐶𝑀1 ∩ 𝐼𝑇𝑔 𝑎𝑛𝑑 𝑔̅1(𝑎, 𝑏) = 𝑎 + 𝑏, 𝑓𝑜𝑟  𝑒𝑎𝑐ℎ 𝑎 ∈

𝐼𝐶𝑀1  𝑎𝑛𝑑 𝑏 ∈ 𝐼𝑇𝑔. 

𝛼(𝑟 𝑥) = 𝑟𝑥, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟 ∈ 𝐼 𝑎𝑛𝑑 𝑥 ∈ 𝐶𝑀1 ∩ 𝑇𝑔.  

𝛽(𝑟 (𝑎, 𝑏)) = (𝑟𝑎, 𝑟𝑏), 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟 ∈ 𝐼, 𝑎 ∈ 𝐶𝑀1  𝑎𝑛𝑑 𝑏 ∈ 𝑇𝑔.   

𝛾(𝑟 (𝑎 + 𝑏)) = 𝑟𝑎 + 𝑟𝑏, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟 ∈ 𝐼, 𝑎 ∈ 𝐶𝑀1  𝑎𝑛𝑑 𝑏 ∈ 𝑇𝑔.  

It is easily checked that the diagram is commutative. Since 𝐶𝑀1 , 𝑇𝑔  ≤𝑃 𝑀1 𝑀2 and 𝑀 is flat, 

then by [14] 𝐶𝑀1 and 𝑇𝑔 are flat and hence 𝐶𝑀1 𝑇𝑔  is flat. By [8, proposition 2.58, p.81] 

𝐼 (𝐶𝑀1 𝑇𝑔)  𝐼(𝐶𝑀1 𝑇𝑔)=   𝐼𝐶𝑀1 𝐼𝑇𝑔. Thus 𝛽 is an isomorphism. Therefore 𝛼 is an 

epimorphism if and only if 𝛾 is monomorphism [8, proposition 2.72, p.90]. It is early show 

that 𝛼(𝐼 (𝐶𝑀1 ∩ 𝑇𝑔))= 𝐼(𝐶𝑀1 ∩ 𝑇𝑔). Hence 𝛼 is onto if and only if 𝑀1 is 𝑀2-PR-module, by 

Theorem (2.12). Moreover, 𝛾 is a monomorphism if and only if 𝐼 (𝐶𝑀1 + 𝑇𝑔)  𝛾 

(𝐼 (𝐶𝑀1 + 𝑇𝑔)) = 𝐼(𝐶𝑀1 + 𝑇𝑔). Thus 𝛾 is monomorphism if and only if 𝐶𝑀1 + 𝑇𝑔 is flat by 

[8, Proposition 2.58, p.81].  

The converse follows from Proposition 2.15. 

 

Corollary 2.18: Let 𝑀 be a flat 𝑅-module, then 𝑀 is a PR-module if and only if for every 𝑅-

homomorphism 𝑔:𝑀 → 𝑀, 𝐶𝑀 + 𝑇𝑔 is flat. 

Proof: Follows from Theorem 2.17, take 𝑀 = 𝑀1 = 𝑀2. 

 

3. Characterization of Rings by Means of Pure Rickart Modules 

     This section study direct summand of PR- modules and provide some kind of 

generalization of rings have been constructed and demonstrated in term of PR-modules. 

 

Proposition 3.1: Let 𝑀1 = 𝐾1 𝐾2  and  𝑀2 be an 𝑅-modules. If 𝑀1 is 𝑀2-PR-module, then  

𝐾1 is 𝑀2-PR-module. 

 

Proof: Suppose that 𝑀1 is 𝑀2-PR-module. Let 𝑔:𝐾1 → 𝑀2 be an 𝑅-homomorphism and 

𝑃:𝑀1 → 𝐾1 be the projection map. Consider the map 𝑔𝑜𝑝:𝑀1 → 𝑀2. Since 𝑀1 is 𝑀2-PR-

module, therefore ker 𝑔𝑜𝑝 ≤𝑃 𝑀1. But  

ker(𝑔𝑜𝑝) = {𝑥 ∈ 𝑀1;  𝑔𝑜𝑝(𝑥) = 0}   

                 = {𝛼 + 𝛽 ∈ 𝑀1;  𝑔(𝑝(𝛼 + 𝛽)) = 0, 𝛼 ∈ 𝐾1, 𝛽 ∈ 𝐾2} 

                 = {𝛼 + 𝛽 ∈ 𝑀1; 𝑔(𝛼) = 0, 𝛼 ∈ 𝐾1, 𝛽 ∈ 𝐾2}  



Al-rdeny and Al-Bahrani                          Iraqi Journal of Science, 2024, Vol. 65, No. 9, pp: 5152-5161 

 

5158 

                 = ker 𝑔 𝐾2. 
Hence ker 𝑔 ≤𝑃 𝑀1. But ker 𝑔 𝐾1, therefore, ker 𝑔 ≤𝑃 𝐾1 by [14]. Thus 𝐾1 is PR-module. 

 

Corollary 3.2: Direct summand of PR-module is also PR-module. 

 

Proof: Follows from Proposition 3.1, take 𝑀 = 𝑀1 = 𝑀2. 

 

Proposition 3.3: Let 𝑀 = 𝑀𝑗∈𝐽


j be a direct sum of fully invariant submodules 𝑀𝑗 , ∀𝑗 ∈ 𝐽. 

Then 𝑀 is PR-module if and only if 𝑀𝑗 is PR-module, ∀𝑗 ∈ 𝐽. 

 

Proof: ) Clear by Corollary 3.2. 

Conversely, let 𝑔:𝑀 → 𝑀 be 𝑅-homomorphism. To show that ker 𝑔 ≤𝑃 𝑀. Since 𝑀𝑗 be a 

fully invariant submodule, ∀𝑗 ∈ 𝐽 then we can consider 𝑔|𝑀𝑗:𝑀𝑗 → 𝑀𝑗 , ∀𝑗 ∈ 𝐽. Clearly that 

ker 𝑔|𝑀𝑗 = ker 𝑔 ∩ 𝑀𝑗 ,∀𝑗 ∈ 𝐽.  

Claim that 𝑘𝑒𝑟 𝑔= 𝑗∈𝐽 (𝑘𝑒𝑟 𝑔|𝑀𝑗). By the same argument of the proof of the, [15].  

To show that, let 𝑥 ∈ ker 𝑔 and let 𝑥 = ∑ 𝑥𝑗𝑗∈𝐽 , where 𝑥𝑗 ∈ 𝑀𝑗 , 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 ∈ 𝐽 𝑎𝑛𝑑 𝑥𝑗 ≠

0 𝑓𝑜𝑟 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑎  𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗 ∈ 𝐽. Hence 𝑔(𝑥) = 𝑔(∑ 𝑥𝑗𝑗∈𝐽 ) = ∑ 𝑔(𝑥𝑗) = 0𝑗∈𝐽 . 

Thus 𝑔(𝑥𝑗) = 0, 𝑗 ∈ 𝐽 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑥𝑗 ∈ ker 𝑔 ∩𝑀𝑗 , ∀𝑗 ∈ 𝐽 . Therefore, 𝑥 ∈ 𝑗∈𝐽 (ker 𝑔 ∩

 𝑀𝑗) = 𝑗∈𝐽 (ker 𝑔|𝑀𝑗). Thus ker 𝑔 = 𝑗∈𝐽 (ker𝑔|𝑀𝑗). But 𝑀𝑗 be a PR-module, for each 𝑗 ∈

𝐽. Therefore, ker 𝑔|𝑀𝑗 ≤𝑃 𝑀𝑗 and hence ker 𝑔 ≤𝑃 𝑀. Thus 𝑀 is PR-module. 

 

Proposition 3.4: Let 𝑀1 not flat 𝑅-module. Then there exists a free 𝑅-module 𝐹 such that 𝐹 

is not 𝑀1-PR-module. 

 

Proof: Assume that 𝑀1 is not flat 𝑅-module. Then there exists a free 𝑅-module 𝐹 and an 

eipmorphism 𝑔: 𝐹 → 𝑀1, by [11, Corollary 4.4.4, p.89]. Claim that ker 𝑔 is not pure of 𝐹. To 

illustrate that, assume not. Consider the short exact sequence        

                                                0 → ker 𝑔
𝑖
→ 𝐹

𝑔
→𝑀1 → 0, 

where 𝑖 is the inclusion map. By [8, Proposition 3.60, p. 139], so 𝑀1 is flat which is 

contradiction. Therefore, ker 𝑔 is not pure of 𝐹. Thus 𝐹 is not 𝑀1-PR-module.   

 

Proposition 3.5: Let 𝑀1 be an 𝑅-module. The following conditions are equivalent: 

1- 𝑀1 is  PR-module; 

2- For every 𝐾1 ≤ 𝑀1, every direct summand 𝐾2 of 𝑀1is 𝐾1-PR-module; 

3- For every pair of direct summands 𝐾1 and 𝐾2 of 𝑀1 and any 𝑔 ∈ 𝐻𝑜𝑚(𝑀1, 𝐾1). The kernel 

of the restricted map 𝑔|𝐾2is a pure of 𝐾2. 

 

Proof: (1)  (2) Let 𝐾2 be a direct summand of 𝑀1, 𝐾1 ≤ 𝑀1 and 𝑔1: 𝐾2 → 𝐾1 be an 𝑅-

homomorphisem. Let 𝑀1 = 𝐾2 𝐾3, for some 𝐾3 ≤ 𝑀1. Define 𝑔:𝑀1 → 𝑀1, by 

                                                     𝑔(𝑥) = {
𝑔1(𝑥),         𝑖𝑓 𝑥 ∈ 𝐾2
0 ,              𝑖𝑓 𝑥 ∈ 𝐾3

   

Clearly, 𝑔 is an 𝑅-homomorphisem. Since 𝑀1 is a PR-module, so ker 𝑔 ≤𝑃 𝑀1.  
Now 𝑘𝑒𝑟𝑔 = {𝛼 + 𝛽 ∈ 𝑀1;   𝑔(𝛼 + 𝛽) = 0, 𝛼 ∈ 𝐾2, 𝛽 ∈ 𝐾3} 
                  = {𝛼 + 𝛽 ∈ 𝑀1;        𝑔1(𝛼) = 0, 𝛼 ∈ 𝐾2, 𝛽 ∈ 𝐾3} = ker 𝑔1   𝐾3.  
Hence ker 𝑔1 ≤𝑃 𝑀1. But ker 𝑔1 𝐾2, therefore, ker 𝑔1 ≤𝑃 𝐾2. Thus 𝐾2 is 𝐾1-PR-module. 

(2)  (3) Let 𝐾1 and 𝐾2 be a direct summand of 𝑀1 and 𝑔:𝑀1 → 𝐾1 be an 𝑅-homomorphism. 

Since 𝐾2 is 𝐾1-PR-module and 𝑔|𝐾2: 𝐾2 → 𝐾1 be an 𝑅-homomorphism, then ker 𝑔|𝐾2 ≤𝑃 𝐾2. 
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(3)  (1) Clear ( taking 𝐾1 = 𝐾2 = 𝑀1, 𝑀1 is 𝑀1-PR-module and hence 𝑀1 is a PR-module). 

 

Proposition 3.6: Let 𝑀1 be a pure simple R-module and let 𝑀2 be an 𝑅-module. If 𝑀1 is 𝑀2-
PR-module, then either  

1- 𝐻𝑜𝑚(𝑀1, 𝑀2) = 0  or, 

2- Every nonzero 𝑅-homomorphism from 𝑀1 to 𝑀2 is a monomorphism. 

 

Proof: Assume that 𝐻𝑜𝑚(𝑀1, 𝑀2) ≠ 0  and let 𝑔:𝑀1 → 𝑀2 be a non-zero 𝑅-homomorphism. 

Since 𝑀1 is 𝑀2-PR-module, then ker 𝑔 ≤𝑃 𝑀1. But 𝑀1 is pure simple, therefore ker 𝑔 = {0}. 
Thus 𝑔 is a monomorphism. 

 

Corollary 3.7: Let 𝑀1 be a pure simple 𝑅-module and let 𝑀2 be an 𝑅-module such that 

𝐻𝑜𝑚(𝑀1,𝑀2) ≠ 0. If 𝑀1 is 𝑀2-PR-module, then 𝑀1 is a Quasi Dedekind module. In 

particular if 𝑀1 is a PR-module, then 𝑀1 is Quasi Dedekind.  

 

Proof: By Proposition 3.6, there is a monomorphism 𝑔:𝑀1 → 𝑀2. Assume 𝑀1 is not Quasi 

Dedekind R-module. Then there exists a nonzero homomorphism 𝑔1:𝑀1 → 𝑀1 such that 

ker 𝑔1 ≠ 0. Since 𝑔 is a monomorphism, then ker(𝑔𝑜𝑔1) = ker 𝑔1 ≠ 0. Since 𝑀1 is 𝑀2-PR-

module, then ker(𝑔𝑜𝑔1) ≤𝑃 𝑀1. But 𝑀1 is pure simple, therefore, ker 𝑔1 = 𝑀. Thus 𝑔1 = 0, 

which is a contradiction. Thus 𝑀1 is a Quasi Dedekind.  

 

Proposition 3.8: Let 𝐴, 𝐵, 𝐶 be an 𝑅-modules. If 𝐴 is 𝐶-PR-module and 𝑔: 𝐴 → 𝐵 be an 

epimorphism, then 𝐵 is 𝐶-PR-module. 

 

Proof: Let 𝑃 be the class of pure submodules, see [16] and let 𝑔1: 𝐵 → 𝐶 be an 𝑅-

homomorphisem. Consider the short exact sequence          0 → ker 𝑔1
𝑖
→𝐵

𝑔1
→ 𝐼𝑚 𝑔1 → 0. 

To show that 𝑔1 is 𝑃-epimorphism. Let 𝐴
𝑔
→𝐵

𝑔1
→ 𝐼𝑚 𝑔1 be an 𝑅-homomorphisem and 

𝐼𝑚 𝑔1 ≤ 𝐶. Since 𝐴 is 𝐶-PR-module, therefore, ker 𝑔1𝑜𝑔 ≤𝑃 𝐴. Hence construct the short 

exact sequence           0 → ker 𝑔1𝑜𝑔
𝑖
→ 𝐴

𝑔1𝑜𝑔
→   𝐼𝑚 𝑔1𝑜𝑔 → 0 ∈ 𝑃.                                                                                                                                                              

Since 𝑔1𝑜𝑔 is 𝑃-epimorphism, then 𝑔1 is 𝑃-epimorphism. 

 

Corollary 3.9: Let 𝑀1 and 𝑀2 be 𝑅-modules. If 𝑀1 is 𝑀2-PR-module, 
𝑀1

𝑁
  is 𝑀2-PR-module, 

for every 𝑁 ≤ 𝑀1. 
 

Proof: Follows by Proposition 3.8, taking 𝑀1 = 𝐴 and  
𝑀1

𝑁
= 𝐵.  

 

Proposition 3.10: Let 𝑀1 be an R-module, if 𝑅 is 𝑀1-PR-module, then every cyclic 

submodule of 𝑀1 is flat. In particular if 𝑅 is a PR-ring, then every principal ideal is flat, i.e. 𝑅 

is a principal flat ring PF-ring. 

 

Proof: Let 𝑀1 be an 𝑅-module, 𝑅 be 𝑀1-PR-module and let 𝑚 ∈ 𝑀1. Now consider the 

following short exact sequence                      0 → ker 𝑓
𝑖
→ 𝑅

𝑔
→ 𝑅𝑚 → 0, 

where 𝑖 is the inclusion map and 𝑔 is a map define by 𝑔(𝑟) = 𝑟𝑚, ∀𝑟 ∈ 𝑅. Let 𝑖2: 𝑅𝑚 → 𝑀1, 

be the inclusion map. Since 𝑅 is 𝑀1-PR-module and 𝑖2𝑜𝑔: 𝑅 → 𝑀1, then ker(𝑖2𝑜𝑔) ≤𝑃 𝑅. 

But 𝑖2 is a monomorphism, therefore ker 𝑔 = ker(𝑖2𝑜𝑔). Thus ker 𝑔 ≤𝑃 𝑅. But 𝑅 is a flat 𝑅-

module, therefore 𝑅𝑚 is flat by [8, Proposition 3.60]. 
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Theorem 3.11: Let 𝑅 be a ring. Then 𝑅 is flat ring if and only if every flat 𝑅-module are 

relatively PR-module to any flat 𝑅-module. 

 

Proof: Suppose that 𝑅 is flat ring. Let 𝑀1 and 𝑀2 be a flat 𝑅-modules and let 𝑔:𝑀1 → 𝑀2 be  

𝑅-homomorphism. Since 𝑀1 𝑀2 is flat, then by [14] 𝐶𝑀1 + 𝑇𝑔 is flat submodule of 𝑀1 𝑀2. 

Therefore 𝑀1 is 𝑀2-PR-module by Theorem 2.17. 

For the opposite. Suppose that 𝑀1be a flat 𝑅-module and 𝑀2 ≤ 𝑀1. Then there exists a free 

𝑅-module 𝐹 and an epimorphisem 𝑔: 𝐹 → 𝑀2, [11, Corollary 4.4.4, p.89]. Let 𝑖:𝑀2 → 𝑀1 be 

inclusion map. Consider the map 𝑖𝑜𝑔: 𝐹 → 𝑀1. Since 𝐹 is flat, then by our assumption 𝐹 is 

𝑀1-PR-module. Thus ker 𝑖𝑜𝑔 ≤𝑃 𝐹 .But 𝑖 is a monomorphism, so ker 𝑖𝑜𝑔 = ker 𝑔 ≤𝑃 𝐹 .But 

𝐹 is flat, therefore 𝑀2 is flat by [8, Proposition 3.60]. 

 

Theorem 3.12: Let 𝑅 be a ring. The following statements are equivalent: 

1- 𝑅 is flat ring; 

2- Every finitely generated flat 𝑅-module are relatively PR-module to any flat 𝑅-module; 

3- Every finitely generated submodule of a finitely generated flat 𝑅-module is flat.  

 

Proof: (1)  (2) Follows by Theorem 3.11. 

(2)  (1) Let 𝐼 be a finitely generated ideal in 𝑅. Then there exists a finitely generated free 𝑅-

module 𝐹 and an epimorphism 𝑔: 𝐹 → 𝐼, [11, Corollary 4.4.4, p.89]. Let 𝑖: 𝐼 → 𝑅 be the 

inclusion map. Consider the map 𝑖𝑜𝑔: 𝐹 → 𝑅. Since 𝐹 is a f.g flat 𝑅-module, then 𝐹 is 𝑅-PR-

module by (2) and hence ker 𝑖𝑜𝑔 ≤𝑃 𝐹. Since 𝑖 is monomorphism, then ker 𝑖𝑜𝑔 =
ker 𝑔 ≤𝑃 𝐹. But 𝐹 is flat, therefore, 𝐼 is flat by [8, Proposition 3.60, p.139]. 

(2)  (3) Since 𝑅 is flat ring, then (3) hold by [7]. 

(3)  (2) Let 𝑀1 be a finitely generated flat module and let 𝑔:𝑀1 → 𝑀1 be an 𝑅-

homomorphism. Let 𝐾 be a finitely generated submodule of  𝐶𝑀1 + 𝑇𝑔. Hence 𝐾 is a finitely 

generated submodule of 𝑀1 𝑀1. But 𝑀1 is flat by (3), therefore 𝐶𝑀1 + 𝑇𝑔 is flat by [8, 

Proposition 3.60, p.139] and hence 𝑀1 is PR-module by Theorem 2.17. Thus 𝑀1 is 𝑀1-PR- 

module. 

(3)  (1) Clear (3→2→1).   

 

Theorem 3.13: Let 𝑅 be a ring. The following statements are equivalent: 

1- 𝑅 is flat ring; 

2- Every projective 𝑅-module are relatively PR-module to any flat 𝑅-module; 

3- Every submodule of  a projective 𝑅-module is flat. 

 

Proof: (1)  (2) Let 𝑀1 be a projective 𝑅-module and hence flat and let 𝑀2 be a flat 𝑅-

module. Thus by Theorem 3.1 𝑀1 is 𝑀2-PR-module. 

(2)  (1) Suppose that 𝐼 be an ideal in 𝑅. There is a free 𝑅-module 𝐹 and an epimorohism 

𝑔: 𝐹 → 𝐼, [11, Corollary 4.4.4, p.89]. Let 𝑖: 𝐼 → 𝑅 be the inclusion map. Consider the map 

𝑖𝑜𝑔: 𝐹 → 𝑅. Since 𝐹 is projective, then 𝐹 is 𝑅-PR-module by (2). Hence ker 𝑔 =
ker 𝑖𝑜𝑔 ≤𝑃 𝐹. Therefore 𝐼 is flat by [8, Proposition 3.60, p.139]. 

(2)  (3) Assume that 𝑀1 is a projective 𝑅-module and let 𝐾 ≤ 𝑀1. There is a free 𝑅-module 

𝐹 and an epimorphism 𝑔: 𝐹 → 𝐾, [11, Corollary 4.4.4, p.89]. Let 𝑖: 𝐾 → 𝑀1 be the inclusion 

map. Consider the map 𝑖𝑜𝑔: 𝐹 → 𝑀1. Since 𝐹 is projective, then 𝐹 is 𝑀1-PR-module by (2). 

Therefore ker 𝑖𝑜𝑔 = ker 𝑔 ≤𝑃 𝐹. Thus 𝐾 is flat by [8, Proposition 3.60, p.139]. 

(3)  (2) Suppose that 𝑀1 is a projective 𝑅-module, then 𝑀1 𝑀1 is projective and let 

𝑔:𝑀1 → 𝑀1 be an 𝑅-homomorphism. Let 𝐶𝑀1 + 𝑇𝑔 ≤ 𝑀1 𝑀1, then by (3) 𝐶𝑀1 + 𝑇𝑔 is flat. 

Therefore by Theorem 2.7, 𝑀1 is PR-module  and hence 𝑀1 is 𝑀1-PR-module.  
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(3)  (1) Clear (3→2→1).  

 

Theorem 3.14: 𝑅 is flat ring if and only if 𝑅 𝑅 is 𝑅-PR-module. 

Proof: Suppose that 𝑅 is flat ring, then 𝑅 𝑅 is 𝑅-PR-module Theorem 3.11. 

For the opposite, suppose that 𝑅 𝑅 is 𝑅-PR-module. Let 𝐼 = 𝑅𝑎1 + 𝑅𝑎2 be a two generated 

ideal in 𝑅. Define 𝑔: 𝑅 𝑅 → 𝐼 by 𝑔(𝑟1, 𝑟2) = 𝑟1𝑎1 + 𝑟2𝑎2, ∀𝑟1, 𝑟2 ∈ 𝑅. It is obvious that 𝑔 is 

an epimorphism. Let 𝑖: 𝐼 → 𝑅 be the inclusion map. Consider the map 𝑖𝑜𝑔: 𝑅 𝑅 → 𝑅. Since 

𝑅 𝑅 is 𝑅-PR-module, then ker 𝑔 = ker 𝑖𝑜𝑔 ≤𝑃 𝑅 𝑅. Therefore 𝐼 is flat by [8, Proposition 

3.60, p.139] and hence by [17] every finitely generated ideal in 𝑅 is flat. Thus 𝑅 is flat ring.  
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