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Abstract

Let M be a non-zero right module over a ring R with identity. The weakly second
submodules is studied in this paper. A non-zero submodule N of M is weakly
second Submodule when Nab € K, where a, b € R and K is a submodule of M
implies either Na € K or Nb S K. Some connections between these modules and
other related modules are investigated and number of conclusions and
characterizations are gained.
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1. Introduction

R is denoted aring has an identity and M is studied as a non-zero left S-right R-bimodule where
S = Endg (M) the endomorphism ring of M. We use the notation “ < ” to denote inclusion. 0 # N is
said to be a second submodule of M if for any a € R, the endomorphism f,: N — N defined by
fa(n) = na for each n € N, is either surjective or zero ( that is Imf, = Na = N or Imf, = Na=10)
[1]. Equivalently 0 # N is a second submodule of M if NI = N or NI = 0 for every ideal I of R [1].
In that situation, anngz (N) is a prime ideal of R[1]. A non-zero module M is a second (or coprime ) if
M is a second submodule of itself [1]. As a new type of second submodules, the concept of weakly
second submodules was presented and studied in [2]. A non-zero submodule N of M is weakly second
submodule whenever Nab € K where a, b € R and K a submodule of M implies either Na € K or
Nb € K [2]. A non-zero module M is a weakly second module if M is a weakly second submodule of
itself [2]. In fact this idea as a dual notion of the concept weakly prime ( sometimes is called classical
prime ) submodules. A proper submodule N of M is wekly prime whenever Kab € N where a,
b € R and K a submodule of M implies either Ka € N or Kb € N [3]. In [4], we provide the idea of
weakly secondary as a generalization of weakly second concept and in the same time it is a new type
of secondary submodules and a dual notion of classical primary submodules respectively. A nonzero
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submodule N of M is weakly secondary submodule whenever Nab € K where a, b € R and K is a
submodule of M implies either Na € K or Nb* € K for some positive integer t [4]. 0 # N is a
secondary submodule of M if for any a € R, the endomorphism f,: N — N defined by f,(n) = na
for each n € N, is either surjective or nilpotent ( that is Imf, = Na = N or Imf, = Na* = 0 for some
positive integer t ) [1]. Equivalently, 0 # N is secondary of M if for every ideal I of R, NI = N or
NI = 0 for some positive integer ¢t [1]. A proper submodule K of M is classical primary whenever
Nab € K where a, b € R and N is a submodule of M then Na € K or Nb* € K for some positive
integer t [5]. N is called simple ( sometimes minimal ) submodule of a module M if N # 0 and for
each submodule L of M and N contains L properly implies L = 0 [6]. A module M is called simple
module if M is simple submodule of itself [6]. M is coquasi-dedekind if all non-zero endomorphism of
M is epimorphism (in other word, f(M) = M for every 0 # f € S ) [7]. Let R be a commutative
integral domains, M is called divisible module over R if Ma = M for each 0 # a € R [6]. A proper
submodule N is maximal if it is not properly contained in any proper submodule of M [6]. A proper
submodule N is called prime if mr € N implies m € N or Mr € N [8]. A proper ideal I is prime if
ab € I where a, b € R implies a € I or b € I [9]. Equivalently, a proper ideal I is prime if AB € I
where A and B are ideals of R implies A €I or B €1 [9]. A ring in which every ideal is prime is
called fully prime[10]. Equivalently, a ring R is fully prime if and only if it is fully idempotent and the
set of ideals of R is totally ordered under inclusion [10]. M is comultiplication provided that for each
submodule N of M, there exists an ideal I of R such that [0:), I] = anny(I) ={m € M and Im =
0 }is a submodule of M [11]. We able to take I = [0:3x N] = anng(N) ={r € Rand Nr =0} is an
ideal of R [11]. N is called a submodule pure in an R-module M when NI = MI n N for each ideal /
of R[12]. M is called regular when every submodule of M is pure [12]. M is called S-second if every
f €S implies f(M) = M or f(M) = 0 [13]. M is indecomposable if M # 0 and it cannot be written
as a direct sum of non-zero submodules ( that is 0 and M are the only direct summands ) [6]. M is
called multiplication when each submodule N of M, we have N = MI for an ideal I of R [14]. We
able totake I =[N:x M]={r € Rand Mr € N } [14]. M is a scalar module when for each f €
End(M) there is a € R with f(m) = ma for all m € M [15]. Other studies within [16-26] is related
topics.

The paper consists of five parts. Within part two, we investigate the weakly second submodules idea
and we supply examples (Remarks and Examples 2.3) and needful features of this concept. We add a
new characterization (Proposition 2.9) and some properties of this concept (Proposition 2.4). The
direct sum of weakly second submodules is discussed (Proposition 2.5). In Section three more
characterizations is given ( Theorem 3.1, Theorem 3.7 and Theorem 3.8 ). In section four we look for
any relationships between weakly second submodules and related modules such as (Proposition 4.1
and Proposition 4.4). S-weakly second modules is dfined and basic properties about this modules is

studied in section five. In what follows, Z, Q, Z,~, Z, = % and Mat, (R) we denote respectively,

integers, rational numbers, the p-Prifer group, the residue ring modulo n and ann X n matrix ring
overR.
2. Weakly Second Submodules

Main facts of this part are introduced. We begin by the following.
Definition 2.1 [2] A nonzero submodule N of M is a weakly second submodule whenever Nab € K,
where a, b € R and K is a submodule of M implies either Na € K or Nb € K.
Theorem 2.2 [2] The following statements are equivalent
(1) N is a weakly second submodule of M.
(2)N # 0 and for each a, b € R implies Nab = Na or Nab = bN.
Remarks and Examples 2.3
(1) Every second submodule is weakly second.
Proof

Let N be second of M then N # 0. Let a, b € R and K a submodule of M with Nab € K. By

hypothesis Nab = N or Nab = 0. In case Nab = N implies Na € N = Nab € K. In case Nab =0
implies Na = Nab =0 € K or Nb = Nab € K as desired.
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(2) Weakly second submodules fail to be second. Consider M = Zp © Z, as Z-module where p is
a prime number then M is weakly second since Mab = Ma or Mab = Ma foreach a, b € Z but M is
not second since if a = p thenpM = 0 @ Z,

(3) As another example of (2), the submodule N :<%+ L >@ Z,~ is weakly second of M =

Zp= @ Zy= as Z-module but N is not second.

(4) Clearly every weakly second submodule is weakly secondary while the converse is not true by [3].
(5) Clearly weakly second and weakly secondary concepts are coincide over Boolean rings.

(6) The secondary submodules and weakly second concepts do not imply from each one to another.
The Z-module Z, is secondary since Z,.a = Z, or Z,.a™ = 0 for some n a positive integer but Z,
is not weakly second because Z,.2.2 = 0 while Z,.2 # 0. On the other side, M = Z, @ Z,= as Z-
module is weakly second but not secondary. Since for each a, b € Z, if a and b are not multiple of p
implies M.a.b = M = M.a™ = M for each positive integer n but when a or b is a multiple of p, we
have M.a.b =0 Z,~» = K = Ma = K and 0y, # M.a™ # M for each positive integer n.

(7) The following implication is clear simple submodule = second submodule = weakly second.

(8) The following implication is clear coquasi-dedekind module = divisible module = second
module = weakly second module.

(9) Itisclear Z,~ and Q as Z-modules are coquasi-dedekind ( and hence are divisible ) by (8)
they are weakly second. Further it is well known that every direct summand of divisible module is
divisible [6]. And every product ( or sum ) of divisible modules is divisible[6]. Accordingly, Z,~ &
Zg~ (Where p and g prime numbers) and Q € Q as Z-modules are divisible and hence weakly
second.

(10) If M is weakly second module then M need not be coquasi-dedekind. For example

Yp Ly~ as Z-module is divisible and hence it is weakly second but it is not coquasi-dedekind.

(11) If N is a maximal (and hence prime) submodule then N may not be weakly secondary. For
example, N = Z,,.2 is a maximal submodule in Z;, as Z-module but N is not weakly second since
N.2.3 = 0 and neither N.2 # 0 nor N.3 # 0.

(12) Let N and H be submodules of an R-module M with N € H € M. If N is weakly second then H
need not be weakly second. For example, let N = {0,2,4} and H = Z, = M submodules of M = Z,
as Z-module where N is a simple submodule so it is weakly second while H is not weakly second
because H.2.3 =0and H.2 = N and H.3 = {0, 3}.

(13) Let N and H be submodules of an R-module M with N € H € M. If H is weakly second then N

need not be weakly second submodule of M. For example, let N =< %+Z >EB<%+ Z > and

N|©

=P

H=M= Z,~ @ Zg~ be submodules of M = Z,~ @ Z,~ as Z-module where p and g prime
numbers. Since M is a divisible module then M is weakly second but N is not weakly second because
Np.q =0y WhileN.p =06 Zg~ and N.q = Z,~ D 0.
(14) As another example of (13), Q as Z-module is divisible so it is weakly second but the submodule
Z is not weakly second.
Proposition 2.4 Every nonzero homomorphic image of weakly second submodule is weakly second.
Proof

Let A and B be R-modules and 0 # V: A - B an R-homomorphism. Let N be a weakly second of
A. Firstly since V = 0 implies V(N) # 0. For each a, b € R then V(N)ab = V(Nab) = V(Na) =
V(N)a or V(N)ab = V(Nab) = (Nb) = V(N)b.
Proposition 2.5 Let A and B be non-zero submodules of of R-modules M; and M, respectively. If
N = A @ B is a weakly second of M = M; @ M, then A and B are weakly second submodules of R-
modules M; and M, respectively
Proof

First A # 0, and B # 0,, because N # 0. Let a, b € R then either (A ® B)ab = (A D B)a or
(A @ B)ab = (A @D B)b and hence Aab = Aa or Bab = Bb and Aab = Ab or Bab = Bb as
required. m
Corollary 2.6 Every non-zero summand of a weakly second module is weakly second.
Remarks and Examples 2.7
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(1) The direct sum of weakly second submodules need not be weakly second. For example, Z, and
Z4 asZ-modules are weakly second where p and g are prime numbers then Z,, @ Z, is not weakly
second Z-module since (Z, @ Z,;)pq = 0 @ 0 while (Z, B Z,)p =0 D Z, and (Z, B Z,)q =
Z, @ 0.
(2)In general Z,, @ Z,, as Z-module is not weakly second for each positive integers n # m.
(3)Obviously, if n is a square-free integer (an integer which has a prime factorization has exactly one
factor for each prime that appears in it) then Z,, as Z-module is not weakly second. Oppositely fails in
general, Z,, asZ-module is not weakly second because Z;,.3.4 = 0 but Z,.3 # 0 # Z,.4 and 12
is not square-free.
4) Let M =A@ B be a direct sum of two R-modules A and B. If N is a weakly second
submodule of A then N @ B may be not a weakly second submodule of M. For example Q is a
divisible Z-module so it is weakly second while Q @Z is not a weakly second since [Q @ 6Z
iz Q @Z] = 6Z is not a prime ideal of Z then by Theorem, Q @Z is not a weakly second Z-module.
In fact for any R-module M then M @ Z is not a weakly second Z-module.
(5)Let M = A @ B be a direct sum of two R-modules A and B. If N is divisible ( or weakly second )
of A and H is not weakly second of B then N @ H is not weakly second of M.
Proof

Suppose N @ H is a weakly second submodule of M then for each a, b € R we have (N @
H)ab = (N @ H)a or (N @ H)ab = (N @ H)b. It follows Hab = Ha or Hab = Hb which is a
contradiction because H is not a weakly second submodule of B as desired.
6)QDPZ, QD Zy, Zy~ D Zand Zy= P Zy, as Z-modules are not weakly second by (4) where n is
a square-free integer.
Proposition 2.8 If N is a weakly second submodule of M then N @ N is a weakly second submodule
of M @ M as R-module.
Proof

Firstly N@ N # 0 @ 0 because N # 0. Let a, b € R then (N @ N)ab = Nab @ Nab but N is
weakly second implies either Nab = Na or Nab = Nb and hence (N @ N)ab = (N @ N)a or
(N @ N)ab = (N @ N)b as required.
Proposition 2.9 The next are equivalent
(1) N is a weakly second submodule of M.

(2)% is a weakly second submodule of %for each submodule H of M contained in N.
Proof
(1) = (2) Let N be a weakly second submodule M and m: M — % be the natural homomorphism for

each submodule H of M contained in N so by Proposition, 7(N) = % is a weakly second submodule
M

E.

(2) = (1) Itis clear by taking H = 0.

3. More Characterizations and Facts About Weakly Second Idea.

Theorem 3.1 The next statements are equivalent

(1) N is a weakly second submodule of an R-module M.

(2)N # 0 and [K:g N] is a prime ideal of R for each submodule K 2 N in M.

Proof

(1) = (2) Assume N is a weakly second and K a submodule of M with N € K implies [K:g N] # R.
Let a, b € R with ab € [K: N] implies Nab € K then Na € K or Nb € K so either a € [K:z N] or
b € [K:i N] as required.

(2) = (1) Let Nab € K where a, b €R. In case N € K then already Na € K and Nb C K. If
N & K then [K:z N] is prime of R by hypothesis and ab € [K:z N] implies Na € K or Nb € K as
desired.

Corollary 3.2 Every submodule of a module over a fully prime ring is weakly second.

Proof

Directly by Theorem 3.1 of (2) = (1)

Corollary 3.3 If N is a weakly second submodule of M then anng (N) is prime of R.
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Proof
Directly via Theorem 3.1 of (1) = (2)
Examples 3.4 The opposite of Corollary 3.3 is not hold in general since anngz(N) = 0 a prime ideal
of Z for every non-zero submodule N of Z while N is not weakly second.
Corollary 3.5 If N is a weakly second submodule of an M then for every submodule K 2 N in M we
have [K:z N] = [K:g Nb] for each b € R with b & [K:z N].
Proof

Let a € [K:g N] then Na < K implies for each b € R Nab € K so a € [K:z Nb]. Conversely, let
a € [K:g Nb] then Nab € K and so ab € [K:N]. Via Theorem 3.1, [K: N] is prime of R and b ¢
[K:g NJ, implies that a € [K:g N] as required.
Corollary 3.6 If N is a weakly second of M then anngz(N) = anngz(bN) for each b € R with
b & anng(N).
Proof
Directly by Corollary 3.5
Theorem 3.7 The following statements are equivalent
(1) is a weakly second of M.
(2) The set {[Q:r 1], Q is a submodule of M with @ 2 u } is a chain of prime ideals of R.
Proof
(1) = (2) Initially [Q:g p] is prime of R for each submodule @ 2 u in M by Theorem 3.1. Let Q and o
be submodules of M, Q 2 u and o 2 u then [Q:z 1] and [o:g u] are prime ideals of R. Suppose
[Q:r N] & [o:x 1] and [o:g ] € [Q: 1] this means there exist ideals I and J of R with I € [Q:x N],
I € [o:rul, J S lo:gu] and J € [Q:pu]. So IJN € Q and IJN < o implies I] € [Q N o:x u]. Since
QN 2u then [QNo:zu] is prime of R it follows I S [QNo:igu] or JS[QNoigul. If IS
[QNo:gu] we have I € [Q:gu] and T S [o:gul. If J < [Q@No:gu] then J S [Q:pu] and | €
[0:r u]. So we see in any case we have a contradiction.
(2) = (1) By Theorem 3.1.
Theorem 3.8 The next are equivalent
(1) N is a weakly second submodule of an R-module M.
(2)N # 0 and for each ideals I, J of R and K a submodule of M such that I[JN < K implies IN € K or
JN C K.
Proof
(1) = (2) First N is a weakly second of an R-module M then N # 0. Let I and J be ideals of R and K
a submodule of M. If N € K we have either I[JN € K and so nothing to prove or IJN < K it follows
I] € [K:g N] and by Theorem ,[K:z N] is a prime ideal so I € [K:g N] or J € [K:z N] and hence
IN S Kor JN € K.Incase N € K then the result already is obtained.
(2) = (1) Let abN < K, where a, b € R and K a submodule of M, then<a><b>NC<SK By
hypothesis either<a >N S K or <b >N S Kthatis aN € K or bN S K as desired.
Corollary 3.9 The following statements are equialent
(1) N is a weakly second submodule of an R-module M.
(2)N # 0 and for each ideals I and | of R implies IN = IJN or JN = IJN.
Proof
Similarly to the proof of Theorem 2.2 and by Theorem 3.1.
Corollary 3.10 The following statements are equialent
(1) N is a weakly second of an R-module M.
(2)N # 0 and for each ideals I and J of R and K a submodule of M suchthat N € K and I] € [K: N]
impliesI € [K:N]or] C [K:N].
Proof.
Directly via corollary 3.9 and Theorem 3.1
Corollary 3.11 The following statements are equialent
(1) N is a weakly second of an R-module M.
(2)N # 0 and for each ideals I and J of R and K a submodule of M with N € K, I] € [K:g N] and
I € [K:g N] implies that ] € [K:z N].

Proof
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Directly via Theorem 3.8
Corollary 3.12 The following statements are equialent
(1) N is a weakly second submodule of an R-module M.
(2)N # 0 and for each ideals I and J of R and K a submodule of M such that N € K ,I] € [K:g N]
and [K:zg N] c I impliesthat ] € [K:i N].
Proof
Directly via Theorem 3.8
4. Weakly Second Submodules and Related Concepts

The following result is given in [11], we give the details of the proof.
Proposition 4.1 If N is a non-zero comuliplication submodule of M together with anng(N) is prime
of R then N is second.
Proof

Let N # 0. For every a € R we can define the endomorphism f, : N = N by f,(n) = na for each
n € N then Imf, = Na. Because N is comultiplication implies Na = anny(I) for an ideal I of R so
Nal = 0 follows al € anngz(N). But anng(N) is prime so Na = 0 or NI = 0. Incase Na # 0 then
NI = 0 follows Na = anny(I) = N as desired.
Corollary 4.2 Let M be a comuliplication R-module such that the annihilator of any non-zero
submodule of M is a prime ideal of R then every nonzero submodule is second.
Proof

Because every submodule of a comultiplication module is comultiplication then by Proposition 4.1,
the result is obtained.
Corollary 4.3 Let N be a non-zero comuliplication submodule of M. Discuss the equivalent below
(1) N is a weakly second submodule of M.
(2)anng (N) is a prime ideal of R.
(3) N is asecond submodule.
Proof
(1) = (2) From Corollary 4.2, (2) = (3) Via[1] and (3) = (1) is clear.
Proposition 4.4 Every non-zero pure submodule of a weakly second module is weakly second.
Proof

Let N be a non-zero pure submodule of a weakly second R-module M. Then for each ideals I and
J of R implies MIJ] = MI or MI] = MJ. It follows either NI] = NN MI] = NN MI = NI or NIJ =
N N MI] = N nMJj = NJ as desired.
Corollary 4.5 Each submodule of a regular weakly second module is weakly second.
Corollary 4.6 Any submodule of a semisimple weakly second module is weakly second.
Example 4.7 Z¢ as Z-module is semisimple but not weakly second as shown in Remark and
Example 2.3 (12) confirms that the status weakly second in Corollary 4.6 can not omitted.
5. §-Weakly Second Modules

At this point we define S-weakly second modules. Firstly we supply a characterization and examples

of S-second modules.
Theorem 5.1 The following are equivalent
(1) M is an S-second module.
(2)M # 0 and whenever {(M) < K where { € S and K a submodule of M implies either M = K or
(M) = 0.
Proof
(1) = (2) Assume M is an S-second R-module then M # 0. Let {(M) € K for some € S and K a
submodule of M. By hypothesis either {(M) = M or {(M) = 0 implies M = K or {(M) = 0.
(2) = (1) By (2) we can choose K = {(M) where ¢ € S implies {(M) < {(M) and hence {(M) = M
or {(M) =0.
Remarks and Examples 5.2
(1) Every S-second module is second.

Proof
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Let M be S-second then for every f € S, either f(M) = M or f(M) = 0. For each a € R, define
fa:M = M by f,(m)=ma for every m € M and it is well known f, € S and Imf, = Ma. By
hypothesis Ma = M or Ma = 0 as desired.

(2) The opposite of (2) is not valid in general. Z, @ Z, as Z-module is second but not S-second
because there is an endomorphism

10 Endy(Z;) Homy(Z,,Z,)\ _ _(Zy Z,
f= (6 6) €5 = Endy(Z, D L,) = (HomZ(ZZ,ZZ) Endy(Z,) >= Mat,(Z,) = (ZZ zz)
and f(x,y) = (x,0) foreach (x,y) € Z, @ Z, implies 0P 0 # Imf =7Z, 0 + Z, P Z,.
(3) Every S-Second module is indecomposable ( that is when a module M has a decomposition then M
is not S-second ).
Proof

Let M be an S-second R-module then M # 0. Suppose that M = A @ B for some R-modules A
and B. So we can define the map {:M — M maps {:M — M by {(x,y) = (x,0) then { € S implies
0+ {(M)=A 0+ M and hence M is not S-second which is a contradiction.

(4) The counter of (3) is not correct comprehensively. Z and Z, as Z-modules are indecomposable but
not second and hence it is not S-second.
(5) Evidently coquasi-dedekind module is S-second.

Q

(G)% =® X, Zp~ is not S-second since if not then 7 is indecomposable via (3) which is a

contradiction and hence % is not coquasi-dedekind.

(7) Obviously every simple module is S-second.
Definition 5.3 A non-zero R-module M is called S-weakly second whenever {9(M) € K, where ¢,
9 € S and K a submodule of M implies either {(M) € K or9(M) < K.
Remarks and Examples 5.4
(1) Every S-weakly second module is weakly second.
Proof

Let M be an S-weakly second R-module then M # 0. Let Mab < K for some a, b €R and K a
submodule of M. Define the endomorphisms f,:M - M by f,(m)=ma and g,:M - M by
gpy(m)=mb for each me M. Then fg(M) = f(g(M)) = f(Mb) = f(M)b = Mab € K. By
hypothesis either f(M) € K or g(M) € K thatis Ma < K or Mb <€ K as desired.
(2) Reversely of (1) fails in general, Z, @ Z, as Z-module is second ( and hence weakly second ) but it
is not S-weakly second since if we take f = (% g) and g = (g (T)) ES=FEnd;(Z, DL, =
Mat,(Z,) implies fg(M) = {fg (;) = (g) for each (%,7) €Z, DL} =00 while f(M) =
Z, ® 0and g(M) = 0 D Z,.
(3) Every S-weakly second module is indecomposable (that is when a module M has a decomposition
then M is not S-weakly second).
Proof

Let M be an S-weakly second R-module then M # 0. Suppose that M = A @ B for some R-
modules A and B. So we can define the maps (: M - M {(x,y) = (x,0) and 9:M - M by {(x,y) =
(0,y) for each (x,y) € M. Itis clear that ¢, ¥ € S implies {9(M) ={(IM)) =7J(0PB)=060
but{(M) =A@ 0and (M) =0 & B. Hence M is not S-weakly second which is a contradiction.
(4) The inverse of (3) is not hold in general, Z and Z, as Z-module are indecomposable but not S-
weakly second.
(5) Every S-second module is S-weakly second.
Proof

Let M be an S-second R-module then M # 0. Let {, ¥ € S and K a submodule of M with {9(M) <
K. By hypothesis {9(M) = M or {9(M) = 0. In case {9(M) = M implies {((M) € M = I(M) € K.
In case 9 (M) = 0 implies {(M) = (9(M) =0 < K or {(M) =0 € K as desired.
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(6) Oppositely of (5) is not correct generally. Let F be a field and let R be the set of infinite matrices
A 0

over F that have the form 0 a a Where A is any finite matrix and a is any element of

F. It isnot hard to see that R isaring with identity and the only non-zero proper ideal I of R is the
A 0
0

subset of all matrices of R of the form 0 0

so is clear I = I? and hence I is prime

[10], also it is obvious the zero ideal is prime and hence R = End(R) is fully prime ring. Via Theorem
3.1, R is a weakly second which is not second.

(7)We have the implication coquasi-dedekind modules = S-second modules = S-weakly second
modules = indecomposable modules.

Theorem 5.5 Study the equivalent

(1) M is an S-weakly second R-module.

(2)M =+ 0 and for each ¢, 9 € S implies (9 (M) = {(M) or {9(M) 2 9(M).

Proof

(1) = (2) Assume M is an S-weakly second R-module then M # 0. Let , 9 € S and {9(M) € K for
submodule K of M. We can choose K = {9(M) so by (1) {(M) € K or 9(M) € K and hence
(M) = {(M) or {I(M) 2 9(M).

(2) > (1) LetM # 0 and ¢, 9 € S with {(M) < K for submodule K of M. By (2), {(M) = {9(M) <
K or 9(M) € {9(M) < K as desired.

Corollary 5.6 If S is commutative ring we have the equivalent

(1) M is an S-weakly second R-module.

(2)M + 0 and for each ¢, 9 € S implies {9(M) = {(M) or {Y(M) = I(M).

Proof

It is obvious

Theorem 5.7 The following statements are equivalent

(1) M is an S-weakly second R-module..

(2)M # 0 and [K:g M] is a prime ideal of S for each proper submodule K of M.

Proof

(1) = (2) Assume M is S-weakly second and K a proper submodule of M implies [K:g M] # R. Let ,
9 € S with {9 € [K:s M] implies {9(M) € K then {(M) € K or 9(M) < K so either { € [K:g M] or
9 € [K:g M] as required.

(2) = (1) Let K be submodule of an R-module M such that {§(M) < K where {, 9 € S. In case
M = K then already {(M) € K and 9(M) € K. If M # K then [K:g M] is prime of S by hypothesis
and {9 € [K:g M] implies {(M) € K or 9(M) < K as desired.

Corollary 5.8 If M is an S-weakly second R-module M then anng(M) = {f € S: f(M) = 0} is prime
of S.

Examples 5.9

(1) The opposite of corollary 5.8 is not hold in general. anng(Z) =0 is a prime ideal of S =
Endy(Z) = Z which is not weakly second and hence it is not S-weakly second .

(2) As another example of (1), let R = (g %) be a ring, e = ((1) 8) an idempotent in R and

M = eR = (g g) a module over R. We have S = Endgr(M) = eRe = (g 8

anng(M) = 0 is a prime ideal in S but M is not an S-weakly second R-module because if we take

-G ) -5 9es
ot 1900 = (3 )5 ) s e =[5 B (5 o

FM) = {(“0Z aoz)} and g(M) = {(bOZ bOZ)} that is neither fg(M) # f(M) nor fg(M) = g(M).

Corollary 5.10 If M is an S-weakly second R-module then for every proper submodule K of M we
have [K:s M] = [K:g9(M)] for each 9 € S with 9 & [K:s M].

) is a domain implies
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Proof
Let { € [K:gM] then {(M) < K implies for each 9 €S, (9(M)<S K so { € [K:g9(M)].
Conversly, let ¢ € [K:s9(M)] then {9(M) € K and so {9 € [K:g M]. Via Theorem 5.7, [K:g N] is
prime of S and 9 & [K:g M] implies that { € [K:g M] as required.
Corollary 5.11 If M is an S-weakly second R-module then anng(M) = anng(gM) for each g € S
with g & anng(M).
Proof
Directly by Corollary 5.10
Theorem 5.12 See the equivalent below
(1) M is an S-weakly second R-module.
(2) The set {[Q:s M] where Q is proper of M } is a chain of prime ideals of S.
Proof
Similar proof of Theorem 3.7
Theorem 5.13 The next are equivalent
(1) M is an S-weakly second R-module.
(2)M =+ 0 and for each ideals I, J of S and K a submodule of M such that IJM < K implies IM € K
or JM C K.
Proof
(1) = (2) First since M is a weakly second R-module then M # 0. Let I and ] be ideals of S and K a
submodule of M. If M # K we have either JM € K and so nothing to prove or IJM < K it follows
I] € [K:s M] and by Theorem 5.7,[K:s M] is a prime ideal of S so I € [K:gM] or ] € [K:sM] and
hence IM € K or JM < K. In case M = K then the result already is obtained.
(2) = (1) Let (M) € K, where {, ¥ €S and K a submodule of M, then S;Sy(M) € K By
hypothesis either S¢;(M) € K or Sy(M) S K where S; and Sy are the ideals generated by ¢ and 9
respectively in S implies {(M) € K or 9(M) < K as dsired.
Corollary 5.14 The next statements are equivalent
(1) M is an S-weakly second R-module.
(2)M =+ 0 and for each ideals I and J of S implies IM = IJM or JM < IJM.
Proof
in similar way to the proof of Theorem 5.5 and by Theorem 5.7.
Corollary 5.15 If S is commutative ring we have the equivalent below
(1) M is an S-weakly second R-module.
(2)M +# 0 and for each ideals I and J of S implies IM = IJM or JM = IJM.
Proof
Itis clear.
Corollary 5.16 The following are balance
(1) M is an S-weakly second of R-module.
(2)M # 0 and for each ideals / and J of S and K a proper submodule of M and IJ € [K:s M] implies
IS [K:gM]or] C [K:sM].
Proof
Directly via Theorem 5.7
Corollary 5.17 The equivalent are equivalent
(1) M is an S-weakly second R-module.
(2)N # 0 and for each ideals / and J of S and K a proper submodule of M, IJ € [K:s M] and
I & [K:g M] impliesthat ] € [K:s M].
Proof
Directly via Corollary 5.16
Corollary 5.18 We have the equivalent
(1) M is an S-weakly second R-module.
(2)M # 0 and for each ideals I and J of S and K a proper submodule of M, I] € [K:s M] and
[K:s M] < I impliesthat] € [K:s M].

Proof
Directly via Corollary 5.16
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Proposition 5.19 Every weakly second multiplication module is S-weakly second

Proof
Let M be a weakly second multiplication R-module and ¢, 9 € S with {9(M) < K for some a

submodule K of M. Since M is multiplication then {9(M) = {(JM) = J{(M) = IJM for ideals I and |

of R and hence IJM < K. By Theorem 5.7, either IM € K or JM € K it follows {(M) € K or

9(M) € K thatis M is S-weakly second.

Proposition 5.20 Every weakly second scalar module is S-weakly second

Proof
Let M be a weakly second scalar R-module and ¢, 9 € S with (9(M) € K for some K a

submodule of M. Since M is scalar then there exist a, b € R such that {(m) = am and 9(m) = mb

forallm € M. Then K 2 {9(M) = {(Mb) = Mab implies Ma € K or Mb < K it follows {(M) € K

or 9(M) € K as desired.

Proposition 5.21 Every summand of S-weakly second module is S-weakly second.

Proof
Let Q be a direct summand of an S-weakly second R-module 9t then It = Q @ u for some

submodule u of M. Let{, 9 € End(N) with {9(Q) € V for some V a submodule of Q. We can define

an+hA)={(n) and B(n+ A)=1"9(n) where n € Qand £ € u. It is easy to see that a, € S,

a(M) = ¢(Q) and B(IN) =I(Q) implies af(M) = {I(Q) € V it follows a(IM) S V or F(M) S V

and hence ¢(Q) € V or9(Q) < V as desired.
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