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Abstract 

    Let   be a non-zero right module over a ring    with identity. The weakly second 

submodules is studied in this paper. A non-zero submodule   of    is weakly 

second Submodule when       ,  where  ,     and   is a submodule of   

implies either      or        . Some connections between these modules and 

other related modules are investigated and number of conclusions  and 

characterizations are gained. 
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 المقاسات الجزئية الثنائية الضعيفة
 

غالب احمد،*زينب سعدي
 

بغجاد ، بغجاد ، العخاققسم الخياضيات ، كلية التخبية للعلهم الصخفة ابن الييثم ، جامعة   
 

 الخلاصة
الثظائية الضعيفة. نطلق ذات محايج. في ىحا البحث درسظا الطقاسات    على حلقة  امقاسا ايطظ  ليكن     

  مقاس جدئي من    و     , بانو ثظائي ضعيف عظجما لكل    من     جدئي  على مقاس
.عجد من الظتائج والطكافئات ليحا الطفيهم      او        فانو اما          بحيث ان

 اعطيت وكحللك دراسة العلاقات بين ىحه الطقاسات والطقاسات الاخخى.
 

1. Introduction 

      is denoted  a ring  has  an identity and    is studied as a non-zero left  -right  -bimodule where 

          the endomorphism ring of  . We use the notation       to denote inclusion.     is 

said to be a second submodule of    if  for any    , the endomorphism         defined by 

         for each    , is either surjective or zero ( that is           or           ) 

[1]. Equivalently     is a second submodule of   if      or      for every ideal   of   [1]. 

In that situation,         is a prime ideal of  [1]. A non-zero module   is  a second (or coprime ) if 

  is a second submodule of itself [1].  As a new type of second submodules, the concept of weakly 

second submodules was presented and studied in [2]. A non-zero submodule   of    is weakly second 

submodule whenever       where  ,     and   a submodule of   implies either      or 

      [2]. A non-zero module   is a weakly second module if   is a weakly second submodule of 

itself [2]. In fact this idea as a dual notion of the concept weakly prime ( sometimes is called classical 

prime ) submodules. A proper submodule   of     is wekly prime whenever       where  , 

    and   a submodule of   implies either      or       [3]. In [4], we provide the idea of 

weakly secondary as a generalization of weakly second concept and in the same time it is a new type 

of secondary submodules and a dual notion of  classical primary submodules respectively. A nonzero 
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submodule   of    is weakly secondary submodule whenever        where  ,     and   is a 

submodule of   implies either      or        for some positive integer   [4].     is a 

secondary submodule of   if  for any    , the endomorphism         defined by           

for each    , is either surjective or nilpotent ( that is           or            for some 

positive integer   ) [1]. Equivalently,     is secondary of    if for every ideal   of  ,      or 

      for some positive integer   [1]. A proper submodule   of    is classical  primary whenever  

      where  ,     and   is a submodule of   then      or         for some positive 

integer   [5].   is called simple ( sometimes minimal ) submodule of a module   if     and for 

each submodule   of   and   contains    properly implies     [6]. A module    is called simple 

module if   is simple submodule of itself [6].   is coquasi-dedekind if all non-zero endomorphism of 

  is epimorphism (in other word,        for every       ) [7]. Let   be a commutative 

integral domains,   is called divisible module over   if      for each       [6]. A proper 

submodule   is maximal if it is not properly contained in any proper submodule of   [6]. A proper 

submodule   is called prime if       implies     or      [8]. A proper ideal   is prime if 

     where   ,     implies     or     [9]. Equivalently, a proper ideal   is prime if      

where    and   are ideals of   implies     or     [9]. A ring in which every ideal is prime is 

called fully prime[10]. Equivalently, a ring   is fully prime if and only if it is fully idempotent and the 

set of ideals of    is totally ordered under inclusion   [10].   is comultiplication provided that for each 

submodule     of  , there exists an ideal   of   such that [    ]               and    
    is a submodule of   [11]. We able to take   [    ]                and        is an 

ideal of   [11].   is called a submodule pure in  an  -module   when         for each ideal   

of  [12].   is called regular when every submodule of   is pure [12].   is called  -second if every 

    implies        or        [13].   is indecomposable if      and it cannot be written 

as a direct sum of non-zero submodules ( that is 0 and   are the only direct summands ) [6].   is 

called multiplication when each submodule   of  , we have        for an ideal   of   [14]. We 

able to take   [       ]       and        [14].   is a scalar module when for each   
       there is     with          for all     [15].  Other studies within [16-26] is related 

topics. 

   The paper consists of five parts. Within part two, we investigate the weakly second submodules idea 

and we supply examples (Remarks and Examples 2.3) and needful features of this concept. We add  a 

new characterization (Proposition 2.9) and some properties of this concept (Proposition 2.4). The 

direct sum of weakly second submodules is discussed (Proposition 2.5). In Section three more 

characterizations is given ( Theorem 3.1, Theorem 3.7 and Theorem 3.8 ). In section four we look for 

any relationships between weakly second submodules and related modules such as (Proposition 4.1 

and Proposition 4.4). S-weakly second modules is dfined and basic properties about this modules is 

studied in section five. In what follows, ℤ, ℚ,  ℤ  ,  ℤ  
ℤ

 ℤ
 and         we denote respectively, 

integers, rational numbers, the  -Prüfer group, the  residue ring modulo   and an        matrix ring 

over   . 

2. Weakly Second Submodules  
   Main facts of this part are introduced. We begin by the following. 

Definition 2.1 [2] A nonzero submodule   of   is a weakly second submodule whenever       ,  

where  ,     and   is a submodule of   implies either      or      .  

Theorem 2.2 [2] The following statements are equivalent 

(1)   is a weakly second submodule of  .  

(2)     and for each  ,     implies         or        .  

Remarks and Examples 2.3  

(1) Every second submodule is weakly second. 

Proof  

     Let   be second of    then    . Let  ,     and   a submodule of   with      . By 

hypothesis       or      . In case        implies           . In case       

implies             or           as desired. 
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(2) Weakly second submodules fail to be second. Consider     ℤ   ℤ   as ℤ-module where   is 

a prime number then   is weakly second since        or        for each  ,   ℤ  but   is 

not second since if     then       ℤ   

(3) As another example of (2), the submodule     
 

 
 ℤ    ℤ   is weakly second of    

 ℤ    ℤ   as ℤ-module but   is not second. 

(4) Clearly every weakly second submodule is weakly secondary while the converse is not true by [3].  

(5) Clearly weakly second and weakly secondary concepts are coincide over Boolean rings. 

(6) The secondary submodules and weakly second concepts do not imply from each one to another.      

The ℤ-module  ℤ  is secondary since  ℤ     ℤ  or   ℤ        for some   a positive integer but ℤ  

is not weakly second  because  ℤ         while  ℤ     . On the other side,    ℤ   ℤ   as ℤ-

module is weakly second but not secondary. Since for each  ,   ℤ, if    and   are not multiple of    

implies                 for each positive integer   but when   or   is a multiple of   , we 

have          ℤ           and           for each positive integer  .  

(7) The following implication is clear simple submodule  second submodule  weakly second.  

(8) The following implication is clear coquasi-dedekind  module  divisible module  second 

module  weakly second module. 

(9)  It is clear  ℤ   and  ℚ as  ℤ-modules are coquasi-dedekind  ( and hence are divisible ) by (8) 

they are weakly second. Further it is well known that every direct summand of divisible module is 

divisible [6]. And every product ( or sum ) of divisible modules is divisible[6]. Accordingly, ℤ   

 ℤ   (where   and   prime numbers) and  ℚ  ℚ as ℤ-modules are divisible and hence weakly 

second. 

(10)  If   is weakly second module then    need not be coquasi-dedekind. For example 
ℚ

ℤ
  

∑  ℤ     as  ℤ-module is divisible and hence it is weakly second but it is not coquasi-dedekind.   

(11) If   is a maximal (and hence prime) submodule then    may not be weakly secondary. For 

example,   ℤ     is a maximal submodule in ℤ   as ℤ-module but   is not weakly second since 

        and neither         nor      .  

(12) Let   and   be submodules of an  -module   with      . If   is weakly second then   

need not be weakly second. For example, let     ̅  ̅  ̅  and    ℤ    submodules of   ℤ  

as ℤ-module where   is a simple submodule so it is weakly second while   is not weakly second 

because         and       and        ̅   ̅. 

(13) Let   and   be submodules of an  -module   with      . If   is weakly second then   

need not be weakly second submodule of  . For example, let    
 

 
 ℤ    

 

 
 ℤ   and 

     ℤ    ℤ   be submodules of     ℤ    ℤ   as ℤ-module where   and   prime 

numbers. Since   is a divisible module then   is weakly second but   is not weakly second because 

        while        ℤ    and       ℤ    .  

(14) As another example of (13), ℚ as ℤ-module is divisible so it is weakly second but the submodule 

ℤ is not weakly second. 

Proposition 2.4 Every nonzero homomorphic image of weakly second submodule is weakly second. 

Proof  

     Let   and   be  -modules and         an  -homomorphism. Let   be a weakly second of 

 . Firstly since     implies       . For each  ,     then                     
      or                         .  

Proposition 2.5 Let   and   be non-zero submodules of of  -modules    and    respectively. If 

      is a weakly second of         then   and   are weakly second submodules of  -

modules    and    respectively 

Proof  

    First      
 and      

 because     . Let  ,     then either                or 

               and hence        or         and         or         as 

required. ∎ 

Corollary 2.6 Every non-zero summand of a weakly second module is weakly second. 

Remarks and Examples 2.7 



Saadi and Ahmed                               Iraqi Journal of Science, 2019, Vol. 60, No.8, pp: 1791-1801        

28:5 

(1) The direct sum of weakly second submodules need not be weakly second. For example, ℤ  and 

ℤ  as ℤ-modules are  weakly second where   and   are prime numbers then ℤ  ℤ  is  not weakly 

second ℤ-module since (ℤ  ℤ )       while (ℤ  ℤ )    ℤ  and (ℤ  ℤ )  

ℤ   . 

(2) In general ℤ  ℤ  as  ℤ-module  is not weakly second for each positive integers    . 

(3) Obviously, if    is a square-free integer (an integer which has a prime factorization has exactly one 

factor for each prime that appears in it) then ℤ  as ℤ-module is not weakly second. Oppositely fails in 

general,  ℤ   as ℤ-module is not weakly second because ℤ         but  ℤ       ℤ     and    

is not square-free. 

(4)  Let       be a direct sum of two  -modules   and  . If   is a weakly second 

submodule of   then     may be not a weakly second submodule of  . For example ℚ is a 

divisible ℤ-module so it is weakly second while ℚ  ℤ is not a weakly second since [ℚ   ℤ 

 ℤ  ℚ  ℤ]   ℤ is not a prime ideal of ℤ then by Theorem,  ℚ  ℤ is not a weakly second ℤ-module. 

In fact for any  -module   then     ℤ  is not a weakly second ℤ-module. 
(5) Let       be a direct sum of two  -modules   and  . If   is divisible ( or weakly second ) 

of   and   is not weakly second of   then     is not weakly second of  .  

Proof 

     Suppose     is a weakly second submodule of   then for each  ,     we have    
            or                 . It follows        or        which is a 

contradiction because   is not a weakly second submodule of   as desired.  

(6) ℚ  ℤ, ℚ  ℤ ,  ℤ   ℤ and  ℤ   ℤ  as ℤ-modules are not weakly second by (4) where   is 

a square-free integer.   

Proposition 2.8 If   is a weakly second submodule of   then     is a weakly second submodule 

of     as  -module. 

Proof  

     Firstly         because    . Let  ,     then                 but   is  

weakly second implies either        or         and hence                 or 

               as required.  

Proposition 2.9 The next are equivalent 

(1)   is a weakly second submodule of  . 

(2) 
 

 
  is a weakly second submodule of  

 

 
 for each submodule   of   contained in  . 

Proof  

(1)  (2) Let   be a weakly second submodule   and      
 

 
 be the natural homomorphism for 

each submodule   of   contained in   so by Proposition,      
 

 
  is a weakly second submodule  

 

 
. 

(2)  (1) It is clear by taking    . 

3. More Characterizations and Facts About Weakly Second Idea. 

Theorem 3.1 The next statements are equivalent 

(1)   is a weakly second submodule of an  -module  .  

(2)     and [    ] is a prime ideal of   for each submodule     in  .   

Proof  

(1)  (2) Assume   is a weakly second and   a submodule of   with      implies [    ]   . 

Let  ,     with    [   ] implies       then       or      so either    [    ] or  

  [    ] as required. 

(2)  (1) Let       where   ,    . In case     then already       and      . If 

    then [    ] is prime of   by hypothesis and    [    ] implies       or      as 

desired.   

Corollary 3.2 Every submodule of a module over a fully prime ring is weakly second.   

Proof  

Directly by Theorem 3.1 of   (2)  (1)  

Corollary 3.3 If   is a weakly second submodule of   then         is prime of  . 
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Proof  

Directly via Theorem 3.1 of   (1)  (2)  

Examples 3.4 The opposite of Corollary 3.3 is not hold in general since            a prime ideal 

of ℤ for every non-zero submodule   of ℤ while   is not weakly second. 

Corollary 3.5 If   is a weakly second submodule of an   then for every submodule     in   we 

have [    ]  [     ] for each     with   [    ].  
Proof 

     Let   [    ] then      implies for each           so   [     ]. Conversely, let 

  [     ] then        and so    [   ]. Via Theorem 3.1, [   ] is prime of   and   
[    ], implies that   [    ] as required.    

Corollary 3.6 If   is a weakly second of   then                  for each     with  

         .  

Proof  
Directly by Corollary 3.5 

Theorem 3.7 The following statements are equivalent 

(1)  is a weakly second of  .  

(2) The set  [    ],   is a submodule of   with       is a chain of prime ideals of  . 

Proof  

(1)  (2) Initially [    ] is prime of   for each submodule     in   by Theorem 3.1. Let   and   

be submodules of  ,     and     then [    ] and [    ] are prime ideals of  . Suppose 
[    ]  [    ] and [    ]  [    ] this means there exist ideals   and   of   with   [    ], 
  [    ],   [    ] and   [    ]. So       and       implies    [      ]. Since 

      then [      ] is prime of   it follows   [      ] or   [      ]. If   
[      ] we have   [    ] and    [    ]. If    [      ] then   [    ] and    
[    ]. So we see in any case we have a contradiction.    

(2)  (1) By Theorem 3.1. 

Theorem 3.8 The next are equivalent 

(1)   is a weakly second submodule of an  -module  .  

(2)     and for each ideals  ,    of   and   a submodule of   such that       implies      or  

    .  

Proof  

(1)  (2) First   is a weakly second of an  -module   then    .  Let   and     be ideals of   and   

a submodule of  . If     we have either       and so nothing to prove or        it follows 

   [    ] and by Theorem ,[    ] is a prime ideal so   [    ] or   [    ] and hence 

     or      . In case     then the result already is obtained. 

(2)  (1) Let      , where  ,     and   a submodule of  , then               By 

hypothesis either         or          that is        or        as desired. 

Corollary 3.9 The following statements are equialent 

(1)   is a weakly second submodule of an  -module  .  

(2)     and for each ideals   and     of   implies        or       .  

Proof 

Similarly to the proof of  Theorem 2.2 and by Theorem 3.1. 

Corollary 3.10  The following statements are equialent 

(1)   is a weakly second of an  -module  .  

(2)     and for each ideals   and     of   and   a submodule of   such that     and     [   ] 
implies   [   ] or   [   ].  
Proof. 

Directly via corollary 3.9 and Theorem 3.1  

Corollary 3.11 The following statements are equialent 

(1)   is a weakly second of an  -module  .  

(2)     and for each ideals   and     of   and   a submodule of   with    ,    [    ] and  

  [    ] implies that   [    ].  
 

Proof 
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Directly via Theorem 3.8  

Corollary 3.12 The following statements are equialent 

(1)   is a weakly second submodule of an  -module  .  

(2)     and for each ideals   and     of   and   a submodule of   such that     ,    [    ] 
and  [    ]    implies that   [    ].  
Proof  

Directly via Theorem 3.8   

4. Weakly Second Submodules and Related Concepts 

     The following result is given in [11], we give the details of the proof.  

Proposition 4.1 If   is a non-zero comuliplication submodule of   together with         is prime 

of   then   is second. 

Proof 

     Let     . For every     we can define the endomorphism        by          for each 

    then        . Because   is comultiplication implies            for an ideal   of   so  

      follows           . But         is prime so       or      . In case       then 

     follows               as desired.  

Corollary 4.2 Let   be a comuliplication  -module such that the annihilator of any non-zero 

submodule of   is a prime ideal of   then every nonzero submodule is second.   

Proof  
     Because every submodule of a comultiplication module is comultiplication then by Proposition 4.1, 

the result is obtained.  

Corollary 4.3 Let   be a non-zero comuliplication submodule of  . Discuss the equivalent below 

(1)   is a weakly second submodule of  . 

(2)         is a prime ideal of  . 

(3)    is a second submodule. 

Proof  

(1)  (2) From Corollary 4.2, (2)  (3) Via [1] and (3)  (1) is clear. 

Proposition 4.4 Every non-zero pure submodule of a weakly second module is weakly second. 

Proof  

     Let   be a non-zero pure submodule of  a weakly second  -module  . Then for each ideals   and  

   of   implies        or       . It follows either                   or      
              as desired.  

Corollary 4.5 Each submodule of a regular weakly second module is weakly second. 

Corollary 4.6 Any  submodule of a semisimple weakly second module is weakly second. 

Example 4.7  ℤ  as ℤ-module is semisimple but not weakly second as shown in Remark and   

Example 2.3 (12) confirms that the status weakly second in Corollary 4.6 can not omitted.  

5.  -Weakly Second Modules 
   At this point we define S-weakly second modules. Firstly we supply a characterization and examples 

of   -second modules. 

Theorem 5.1 The following are equivalent  

(1)   is an  -second module. 

(2)     and whenever        where     and   a submodule of   implies either       or 

      .   

Proof 

(1)  (2) Assume   is an S-second  -module then    . Let        for some    and   a 

submodule of  . By hypothesis either        or        implies     or       . 

(2)  (1) By (2) we can choose        where     implies           and hence        

or        .  

Remarks and Examples 5.2 

(1) Every S-second module is second. 

 

 

 

Proof  
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     Let   be S-second then for every    , either        or       . For each    ,  define 

        by          for every     and it is well known      and        . By 

hypothesis      or       as desired. 

(2) The opposite of (2) is not valid in general. ℤ  ℤ  as ℤ-module is second but not S-second 

because there is an endomorphism 

  ( ̅  ̅
 ̅  ̅

)       ℤ ℤ  ℤ    (
   ℤ ℤ     ℤ ℤ  ℤ  

   ℤ ℤ  ℤ     ℤ ℤ  
)       ℤ   (

ℤ ℤ 

ℤ ℤ 
) 

and              for each       ℤ  ℤ  implies   ̅   ̅      ℤ   ̅  ℤ  ℤ . 

(3) Every S-Second module is indecomposable ( that is when a module    has a decomposition then   

is not  -second ). 

Proof  

     Let   be an S-second  -module then    . Suppose that        for some  -modules   

and  . So we can define the map       maps       by              then     implies 

             and hence   is not S-second which is a contradiction. 

(4) The counter of (3) is not correct comprehensively. ℤ and ℤ  as ℤ-modules are indecomposable but 

not second and hence it is not S-second. 

(5) Evidently coquasi-dedekind module is S-second. 

(6) 
ℚ

ℤ
  ∑  ℤ     is not S-second since if not then 

ℚ

ℤ
 is indecomposable via (3) which is a 

contradiction and hence 
ℚ

ℤ
 is not coquasi-dedekind. 

(7) Obviously every simple module is S-second. 

Definition 5.3 A non-zero  -module   is called S-weakly second whenever        ,  where  , 

    and   a submodule of   implies either        or        .  

Remarks and Examples 5.4  

(1) Every  -weakly second module is weakly second. 

Proof  

     Let   be an  -weakly second  -module then    . Let       for some  ,     and   a 

submodule of  . Define the endomorphisms        by           and         by 

         for each    . Then        (    )                   . By 

hypothesis either        or         that is      or      as desired. 

(2) Reversely of (1) fails in general, ℤ  ℤ  as ℤ-module is second ( and hence weakly second ) but it 

is not  -weakly second since if we take   ( ̅  ̅
 ̅  ̅

) and   ( ̅  ̅
 ̅  ̅

)       ℤ ℤ  ℤ   

     ℤ   implies          (
 ̅
 ̅

)  ( ̅
 ̅

) for each   ̅  ̅  ℤ  ℤ     ̅   ̅  while      

ℤ   ̅ and       ̅  ℤ . 

(3) Every  -weakly second module is indecomposable (that is when a module    has a decomposition 

then   is not  -weakly second). 

Proof  

     Let   be an  -weakly second  -module then    . Suppose that        for some  -

modules   and  . So we can define the maps                    and        by        
      for each        . It is clear that  ,     implies                          

but          and          .  Hence   is not  -weakly second which is a contradiction.   

(4) The inverse of (3) is not hold in general, ℤ and ℤ  as ℤ-module are indecomposable but not  -

weakly second. 

(5) Every  -second module is  -weakly second. 

 Proof 

     Let   be an  -second  -module then    . Let  ,     and   a submodule of   with       
 . By hypothesis         or        . In case         implies               . 

In case         implies                 or           as desired. 
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(6) Oppositely of (5) is not correct generally. Let   be a field and let   be the set of infinite matrices 

over   that have the form (

   

 
 

 
 

  ) Where     is any finite matrix and     is any element of  

 .  It  is not hard to see that      is a ring with identity and the only non-zero proper ideal   of    is the 

subset of all matrices of     of the form (

   

 
 

 
 

  ) so is clear      and hence   is prime 

[10], also it is obvious the zero ideal is prime and hence          is fully prime ring. Via Theorem 

3.1,   is a weakly second  which is not second. 

(7) We have the implication coquasi-dedekind modules   -second modules   -weakly second 

modules  indecomposable modules. 

Theorem 5.5 Study the equivalent 

(1)   is an  -weakly second  -module.  

(2)     and for each  ,     implies            or           .  

Proof  

(1)  (2) Assume   is an  -weakly second  -module then    . Let  ,      and         for 

submodule   of  . We can choose          so by (1)        or         and hence 

           or            . 

(2)  (1) Let     and  ,     with        for submodule   of  . By (2),            
  or               as desired. 

Corollary 5.6 If   is commutative ring we have the equivalent 

(1)   is an  -weakly second  -module.  

(2)     and for each  ,     implies            or           .  

Proof  

It is obvious 

Theorem 5.7 The following statements are equivalent 

(1)   is an  -weakly second  -module..  

(2)     and [    ] is a prime ideal of   for each proper submodule   of  .  

Proof  

(1)  (2) Assume   is  -weakly second and   a proper submodule of   implies [    ]   . Let  , 

    with    [    ] implies         then         or        so either    [    ] or  

  [    ] as required. 

(2)  (1) Let   be submodule of an  -module   such that         where   ,    . In case 

    then already         and        . If     then [    ] is prime of   by hypothesis 

and    [    ] implies         or        as desired. 

Corollary 5.8 If   is an  -weakly second  -module   then                      is prime 

of  . 

Examples 5.9   

(1) The opposite of corollary 5.8  is not hold in general.      ℤ     is a prime ideal of   
   ℤ ℤ  ℤ which is not weakly second and hence it is not  -weakly second .  

(2) As another example of (1), let   (
 ℤ  ℤ
  ℤ

) be a ring,   (
  
  

) an idempotent in   and 

     (
 ℤ  ℤ
  

) a module over  . We have               (
 ℤ  
  

) is a domain implies  

          is a prime ideal in   but   is not an   -weakly second  -module because if we take 

  (
  
  

),   (
  
  

)    

implies       {(
  
  

) (
    
  

)           ℤ}  {(
      

  
)}  {(

  ℤ   ℤ
  

)}but 

     {(
 ℤ  ℤ
  

)} and      {(
 ℤ  ℤ
  

)} that is neither            nor           . 

Corollary 5.10 If   is an  -weakly second  -module then for every proper submodule   of   we 

have [    ]  [       ] for each     with   [    ].  
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Proof  

     Let   [    ] then        implies for each    ,         so   [       ]. 
Conversly, let   [       ] then          and so    [    ]. Via Theorem 5.7, [    ] is 

prime of    and   [    ] implies that   [    ] as required. 

Corollary 5.11 If   is an  -weakly second  -module then                  for each     

with           .  

Proof  
Directly by Corollary 5.10 

Theorem 5.12 See the equivalent below 

(1)   is an  -weakly second  -module.  

(2) The set  [    ] where   is proper of     is a chain of prime ideals of  . 

Proof  

Similar proof of Theorem 3.7 

Theorem 5.13 The next are equivalent 

(1)   is an  -weakly second  -module.  

(2)     and for each ideals  ,   of    and   a submodule of   such that       implies      

or      .  

Proof  

(1)  (2) First since   is a weakly second  -module then    . Let   and     be ideals of   and   a 

submodule of  . If     we have either       and so nothing to prove or        it follows 

   [    ] and by Theorem 5.7,[    ] is a prime ideal of   so   [    ] or   [    ] and 

hence      or      . In case     then the result already is obtained. 

(2)  (1) Let        , where  ,     and   a submodule of  , then               By 

hypothesis either          or           where    and    are the ideals generated by   and   

respectively in     implies        or        as dsired.  

Corollary 5.14 The  next statements are equivalent 

(1)   is an  -weakly second  -module.  

(2)     and for each ideals   and    of   implies        or       .  

Proof  

in similar way to the proof of  Theorem 5.5 and by Theorem 5.7. 

Corollary 5.15 If   is commutative ring we have the equivalent below 

(1)   is an  -weakly second  -module.  

(2)     and for each ideals   and     of   implies        or       .  

Proof  

It is clear. 

Corollary 5.16 The following are balance 

(1)   is an  -weakly second of  -module.  

(2)     and for each ideals   and     of   and   a proper submodule of   and     [    ] implies 

  [    ] or   [    ].  
Proof  

Directly via Theorem 5.7 

Corollary 5.17 The equivalent are equivalent 

(1)   is an  -weakly second  -module.  

(2)     and for each ideals   and     of   and   a proper submodule of  ,    [    ] and  

  [    ] implies that   [    ].  
Proof  

Directly via Corollary 5.16 

Corollary 5.18 We have the equivalent 

(1)   is an  -weakly second  -module.  

(2)     and for each ideals   and    of   and   a proper submodule of  ,    [    ] and  

[    ]    implies that   [    ].  
 

Proof  

Directly via Corollary 5.16 
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Proposition 5.19 Every weakly second multiplication module is  -weakly second 

Proof  

     Let   be a weakly second multiplication  -module and  ,     with         for some a 

submodule   of  . Since   is multiplication then                       for ideals   and   

of   and hence      . By Theorem 5.7, either      or      it follows        or 

       that is    is  -weakly second. 

Proposition 5.20 Every weakly second scalar module is  -weakly second 

Proof  

     Let   be a weakly second scalar  -module and  ,     with         for some    a 

submodule of  . Since   is scalar then there exist  ,     such that          and         

for all    . Then                   implies      or      it follows        

or        as desired.  

Proposition 5.21 Every summand of  -weakly second module is  -weakly second. 

Proof  

     Let   be a direct summand of an  -weakly second  -module   then       for some 

submodule   of  . Let  ,          with         for some   a submodule of  . We can define 

            and              where    and    . It is easy to see that  ,    ,  

          and            implies               it follows        or        

and hence        or        as desired. 
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