Iraqi Journal of Science, 2019, Vol. 60, No. 7, pp: 1584-1591 DOI: 10.24996/ijs.2019.60.7.18

ISSN: 0067-2904

On Jacobson – Small Submodules

Ali Kabban , Wasan Khalid

Department of mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

Let R be an associative ring with identity and let M be a unitary left R-module . As a generalization of small submodule , we introduce Jacobson-small submodule (briefly J-small submodule). We state the main properties of J-small submodules and supplying examples and remarks for this concept . Several properties of these submodules are given . Also we introduce Jacobson-hollow modules (briefly J-hollow). We give a characterization of J-hollow modules and gives conditions under which the direct sum of J-hollow modules is J-hollow . We define J-supplemented modules and some types of modules that are related to J-supplemented modules and introduce properties of this types of modules. Also we discuss the relation between them with examples and remarks are needed in our work.

 $\label{eq:Keywards: J-small submodules, J-hollow modules, J-supplemented modules, weakly J-supplemented modules.$

حول المقاسات الجزئية الصغيرة من النمط – J

علي كبان ، وسن خالد قسم الرياضيات ، كلية العلوم ، جامعة بغداد، بغداد، العراق

الخلاصة

لتكن R حلقة تجميعية ذات عنصر محايد وليكن M مقاساً ايسر معرف عليها . كتعميم على المقاس الجزئي الصغير, نحن نقدم المقاس الجزئي الصغير من النمط-J . نذكر الخصائص الرئيسية للمقاسات الجزئية الصغيرة من النمط-J ونقدم امثلة وملاحظات لهذا المفهوم . يتم اعطاء العديد من خصائص هذه المقاسات الجزئية . وايضاً نقدم المقاسات المجوفة من النمط-J . نعطي تعميمات حول المقاسات المجوفة من النمط-J ونعطي الشروط التي بموجبها جمع المقاسات المجوفة من النمط-J . نعطي تعميمات مول المقاسات المحوفة من النمط-J . نعرف المقاسات المكملة من النمط-J وبعض انواع المقاسات المرتبطة بالمقاسات المكملة من النمط-J ونقدم خصائص هذه الانواع من المقاسات . وايضاً نناقش العلاقة بينهما مع الامثلة والملاحظات التي نحتاجها في عملنا .

1. Introduction

Throughout this paper , all rings are associative with unity and modules are unital left R-modules , where R denotes such a ring and M denotes such a module. A submodule N of M is called a small submodule of M if whenever N+ K= M for some submodule K of M , we have M = K , and in this case we write N << M, See [1]. A nonzero module M is called hollow module , if every proper submodule of M is small in M . See [1] . It is known that the Jacobson radical of M denoted by J (M) is the sum of all small submodules of M . In fact we use J (M) to introduce a generalization of small submodules , A submodule N of M is called J-small submodule of M (denoted by N «_I M) if

whenever M = N + K, with $J(\frac{M}{K}) = \frac{M}{K}$ implies M = K. Also, we define J-hollow modules as generalizations hollow modules A non - zero R-module M is called J-hollow module if every proper submodule of M is J-small submodule of M. And give the basic properties of this concept and prove a characterization of J-hollow modules and give certain conditions under which the direct sum of J-hollow modules is J-hollow. Let M be a module . For N, $L \subseteq M$, N is a supplement of L in M if N is minimal with respect to M = N + L. Equivalently, M = N + L with $N \cap L \ll N$. See [2].

M is called a weakly supplemented module if for each submodule N of M there exists a submodule K of M such that M = N + K and $N \cap K \ll M$. See [3]. A module M is called supplemented if any submodule N of M has a supplement in M. See [3]. As a generalization of supplemented module. We define J-supplemented module, let M be any R-module and let V,U be submodule of M, V is J-supplement of U in M if the V + U = M, and V \cap U \ll_{I} V and M is called J-supplemented if every submodule of M has J-supplement submodule. Finally as generalizations of J-supplemented module. We define weakly J-supplemented module, a submodule V is weak J-supplement of U in M if M = U + V and $U \cap V \ll_I M$, and M is called weakly J-supplemented if every submodule of M has J-supplement in M.

2. J-Small submodules and J-Hollow Modules .

In this section, we introduce J-small submodules as a generalization of small submodules, we illustrate this concept by examples and remarks and give the properties of J-small submodules. As

a generalization hollow modules and by using the concept of J-small submodule we introduce J-hollow module.

Definition (2.1) : Let M be any R-module a submodule N of M is called Jacobson-small (for short J-small, denoted by N \ll_J M) if whenever M = N+K, K \subseteq M ,such that J($\frac{M}{K}$) = $\frac{M}{K}$ implies M = K Before we prove some properties of J-small submodule , we need the following .

Proposition (2.2): Let A, B be submodule of an R-module M if $A \subseteq B \subseteq M$ and $J(\frac{M}{A}) = \frac{M}{A}$,

then $J(\frac{M}{B}) = \frac{M}{B}$ **Proof:** Let $f: \frac{M}{A} \to \frac{M}{B}$ be an epimorphism, be defined by f(m + A) = m + B, since $f(J(\frac{M}{A})) \subseteq$ $J(\frac{M}{B})$. Hence $f(\frac{M}{A}) = \frac{M}{B} \subseteq J(\frac{M}{B})$. Therefor $J(\frac{M}{B}) = \frac{M}{B}$.

Corollary (2.3): Let M be any R-module , and let A , B be submodule of M . If $J(\frac{M}{A}) = \frac{M}{A}$, then $J(\frac{M}{A+B}) = \frac{M}{A+B} \ .$

Examples (2.4) :

1) It is clear that every small submodule of any R-module M is J-small. But the convers is not true in general. For example \mathbb{Z}_6 as \mathbb{Z} -module, let $A = \{\overline{0}, \overline{3}\}$, $B = \{\overline{0}, \overline{2}, \overline{4}\}$, $A + B = \mathbb{Z}_6$ with $J(\frac{\mathbb{Z}_6}{B}) \neq \frac{\mathbb{Z}_6}{B}$. Thus A is J-small submodule of \mathbb{Z}_6 but not small in \mathbb{Z}_6 .

2) \mathbb{Z}_4 as \mathbb{Z} -module , by (1) , { $\overline{0}$ } and { $\overline{0}$, $\overline{2}$ } are J-small in \mathbb{Z}_4

3) Consider $M = \mathbb{Z} \bigoplus \mathbb{Z}_{p^{\infty}}$ as \mathbb{Z} - module Since $\frac{M}{\mathbb{Z}} \cong \mathbb{Z}_{p^{\infty}}$, then $J(\frac{M}{\mathbb{Z}}) \cong J(\mathbb{Z}_{p^{\infty}}) = \mathbb{Z}_{p^{\infty}} \cong \frac{M}{\mathbb{Z}}$. $J(\frac{M}{\mathbb{Z}}) = \frac{M}{\mathbb{Z}}$, but $M \neq \mathbb{Z}$. This mean that $\mathbb{Z}_{p^{\infty}}$ is not J-small in M.

Proposition (2.5) : Let M be an R-module . If J(M) = M and $A \subseteq M$. Then $A \ll_I M$ if and only if $A \ll M$.

Proof: \implies Let $L \subseteq M$ and let A + K = M, to prove K = M, we claim that $J(\frac{M}{K}) = \frac{M}{K}$, let $f: M \to \frac{M}{K}$ be the natural epimorphism since $f(J(M)) \subseteq J(\frac{M}{K})$, and J(M) = M, then $f(M) \subseteq J(\frac{M}{K})$, therefore $\frac{M}{K} \subseteq J(\frac{M}{K})$ and $J(\frac{M}{K}) = \frac{M}{K}$, since $A \ll_J M$ then K = M, hence $A \ll M$. \leftarrow Clearly by (Examples 2.4.(1)).

Note: By Proposition (2.5) we can show easily that the infinite sum of J-small is not J-small . Proposition (2.6): Let M be any R-module.

1) Let $A \subseteq B \subseteq M$. Then $B \ll_J M$ if and only if $\frac{B}{A} \ll_J \frac{M}{A}$ and $A \ll_J M$. 2) Let A and B be a submodules of M. Then $A + B \ll_J M$ if and only if $A \ll_J M$ and $B \ll_J M$.

3) Let $A_1, A_2, \dots, A_n \leq M$. Then $\sum_{i=1}^n A_i \ll_I M$ if and only if $A_i \ll_I M$, $\forall i = 1, 2, \dots, n$

4) Let $A \subseteq B$ be submodules of M. If $A \ll_I B$, then $A \ll_I M$. 5) Let $f: M \to N$ be a homomorphism. If $A \ll_I M$, then $f(A) \ll_I N$. 6) Let $M = M_1 \bigoplus M_2$ be R-module and let $A_1 \subseteq M_1$ and $A_2 \subseteq M_2$. Then $A_1 \bigoplus A_2 \ll_I M_1 \bigoplus M_2$ if and only if $A_1 \ll_J M_1$ and $A_2 \ll_J M_2$. **Proof:** (1):=> Let B $\ll_J M$. To prove $\frac{B}{A} \ll_J \frac{M}{A}$, let $L \subseteq M$ and $\frac{L}{A} \subseteq \frac{M}{A}$, suppose that $\frac{B}{A} + \frac{L}{A}$ = $\frac{M}{A}$ and $J(\frac{M}{L}) = \frac{M}{L}$ to prove $\frac{M}{A} = \frac{L}{A}$, since $\frac{B+L}{A} = \frac{M}{A}$ then B + L = M and B $\ll_J M$, hence M = L and $\frac{M}{A} = \frac{L}{A}$. Therefore $\frac{B}{A} \ll_J \frac{M}{A}$, to prove $A \ll_J M$, let $L \subseteq M$ suppose that A + L = Mand $J(\frac{M}{L}) = \frac{M}{L}$, since $B \ll_J M$ and $A \subseteq B$ then B + L = M and since $J(\frac{M}{L}) = \frac{M}{L}$, thus M = L, so $A \ll_I M$. $= \text{suppose that } \frac{B}{A} \ll_J \frac{M}{A} \text{ and } A \ll_J M \text{ to prove } B \ll_J M \text{ . Let } L \subseteq M \text{ suppose that } B + L = M \text{ and } J(\frac{M}{L}) = \frac{M}{L} \text{ to prove } M = L \text{ , } \frac{M}{A} = \frac{B+L}{A} \text{ since } A \subseteq B \text{ then } A + B = B \text{ , so } \frac{B+L}{A} = \frac{B+L+A}{A} = \frac{B}{A} + \frac{L+A}{A} = \frac{M}{A} \text{ , to prove } J(\frac{M}{\frac{L+A}{A}}) = J(\frac{M}{L+A}) = \frac{M}{L+A} \text{ , since } J(\frac{M}{L}) = \frac{M}{L} \text{ , then by } J(\frac{M}{\frac{L+A}{A}}) = \frac{M}{L} \text{ suppose that } J(\frac{M}{L+A}) = \frac{M}{L+A} \text{ , since } J(\frac{M}{L}) = \frac{M}{L} \text{ , then by } J(\frac{M}{L+A}) = \frac{M}{L} \text{ , then by } J(\frac{M}{L+A}) = \frac{M}{L} \text{ , then by } J(\frac{M}{L+A}) = \frac{M}{L} \text{ , since } J(\frac{M}{L+A}) = \frac{M}{L} \text{ , then by } J(\frac{M}{L+A}) = \frac{M}{L} \text{ ,$ Corollary (2.3) $J(\frac{M}{L+A}) = \frac{M}{L+A}$, since $\frac{A}{A} \ll_J \frac{M}{A}$. Then $\frac{L+A}{A} = \frac{M}{A}$ thus A+L = M, since $A \ll_J M$, so M = L, therefore $B \ll_I M$ (2) \Rightarrow Let A + B $\ll_J M$ to show A $\ll_J M$ and B $\ll_J M$, let A + C = M and J($\frac{M}{C}$) = $\frac{M}{C}$ to prove M = C, since $A + B \ll_J M$ then (A + B) + C = M, and since $J(\frac{M}{C}) = \frac{M}{C}$, thus M = C, then $A \ll_J M$, and similarity $B \ll_I M$ $\leftarrow \text{Let } A \ll_J M \text{ and } B \ll_J M \text{ to show } A + B \ll_J M \text{ , let } A + B + C = M \text{ , and } J(\frac{M}{C}) = \frac{M}{C} \text{ to prove } M = C \text{ since } A \ll_J M \text{ , then } B + C = M \text{ , since } J(\frac{M}{C}) = \frac{M}{C} \text{ , then by Corollary (2.3) } J(\frac{M}{B+C}) = \frac{M}{B+C} \text{ , }$ thus B + C = M, and since $B \ll_J M$, and $J(\frac{M}{C}) = \frac{M}{C}$, then M = C and $A + B \ll_J M$. (3) By induction . Let $A_1 + A_2 + B = M$, with $J(\frac{M}{B}) = \frac{M}{B}$, by Corollary (2.3) $J(\frac{M}{A_2+B}) = \frac{M}{A_2+B}$, since $A_1 \ll_J M$, we get $M = A_2 + B$, since $A_2 \ll_J M$, thus M = B. Suppose the relate is true for all $K \in N$. Let $A_1 + A_2 + \ldots + A_n + B = M$ with $J(\frac{M}{B}) = \frac{M}{B}$. Then $(A_1 + A_2 + \ldots + A_{n-1}) + A_n + B = M$, since $A_n \ll_J M$, and $J(\frac{M}{A_1 + A_2 + \ldots + A_{n-1} + B}) = \frac{M}{A_1 + A_2 + \ldots + A_{n-1} + B}$, hence we get $A_1 + A_2 + \ldots + A_{n-1} + B = M$. Continue until we get $A_1 + B = M$, $A_1 \ll_J M$ thus M = B(4) Suppose that A + C = M and $J(\frac{M}{C}) = \frac{M}{C}$. To prove M = C, then $B \cap (A + C) = M \cap B$ and $B \cap (A + C) = B \text{ (by modular law), } A + (B \cap C) = B \text{, to prove } J(\frac{B}{B \cap C}) = \frac{B}{B \cap C} \text{, by the (Second isomorphism)} \frac{B}{B \cap C} \cong \frac{B+C}{C} \cong \frac{M}{C} \text{. But } J(\frac{M}{C}) = \frac{M}{C} \text{, hence } J(\frac{B}{B \cap C}) = \frac{B}{B \cap C} \text{ and } A \ll_J B \text{, then } B \cap C = B \text{, so } B \subseteq C \text{ and } A \subseteq C \text{, but } A + C = M \text{, then } M = C \text{, thus } A \ll_J M \text{.}$ (5) By the (First isomorphism) $\frac{M}{\text{Ker } f} \cong f(M)$, but M = M + Ker f, $\frac{M + \text{Ker } f}{\text{Ker } f} \cong f(M)$, but $A \subseteq M$,

then $\frac{A + \text{Ker } f}{\text{Ker } f} \cong f(A)$, and $A \subseteq A + \text{Ker } f$, since $A \ll_J M$. Then $A + \text{Ker } f \ll_J M$, by Proposition (2.6.(1)), $\frac{A + \text{Ker } f}{\text{Ker } f} \ll_J \frac{M}{\text{Ker } f}$ since $f(A) \cong \frac{A + \text{Ker } f}{\text{Ker } f} \ll_J \frac{M}{\text{Ker } f} \cong f(M)$, then $f(A) \ll_J f(M) \subseteq N$, by Proposition (2.6.(4)), $f(A) \ll_J N$.

 $\begin{array}{l} \text{(6)} \Longrightarrow \text{Let } A_1 \bigoplus A_2 \ll_J M_1 \bigoplus M_2 \ \text{, to show } A_1 \ll_J M_1 \ \text{and } A_2 \ll_J M_2 \ \text{Let } \pi_1 \colon M_1 \bigoplus M_2 \ \longrightarrow \ M_1 \ \text{the projection map} \ \text{define as follows} \ \text{, } \pi_1 \ (m_1 + m_2) = m_1 \ \text{, for all } m_1 + m_2 \in \ M_1 \oplus M_2 \ \text{. Since } A_1 \oplus A_2 \ll_J M_1 \oplus M_2 \ \text{, then by Proposition (2.6.(5))} \ \text{, } \pi_1 \ (A_1 \oplus A_2 \) \ll_J \pi_1 \ (M_1 \oplus M_2 \) \ \text{, by definition of } \pi_1 \ \text{. We obtain , } A_1 \ll_J \ M_1 \ \text{, and similarity } A_2 \ll_J M_2 \ \text{.} \end{array}$

 $\leftarrow \text{Let } A_1 \ll_J M_1 \text{ and } A_2 \ll_J M_2 \text{ .To show } A_1 \oplus A_2 \ll_J M_1 \oplus M_2 \text{ , } A_1 \ll_J M_1 \subseteq M \text{ , and } A_2 \ll_J M_2 \subseteq M \text{ , then by Proposition (2.6.(4)) , } A_1 \ll_J M \text{ and } A_2 \ll_J M \text{ . By Proposition (2.6.(2)) , } A_1 \oplus A_2 \ll_J M = M_1 \oplus M_2 \text{ .}$

Proposition (2.7): Let M be an R-module and $A \subseteq B \subseteq M$. If B is a direct summand of M and $A \ll_J M$, then $A \ll_J B$.

Proof: Let A + L = B, and $J(\frac{B}{L}) = \frac{B}{L}$. To prove B = L. Suppose that $M = B \oplus B_1$, $M = A + L + B_1$, then by Corollary (2.3), $J(\frac{M}{L+B_1}) = \frac{M}{L+B_1}$ and $A \ll_J M$, then $M = L + B_1$ but $L \cap B_1 = 0$, then $M = L \oplus B_1$, but $M = B \oplus B_1$ and $L \subseteq B$, then B = L, and hence $A \ll_J B$.

Proposition (2.8) : Let M be an R-module and let A, B and C are submodules of M with $A \subseteq B \subseteq C \subseteq M$, if $B \ll_I C$ then $A \ll_I M$.

Proof : Suppose that A + K = M and $J(\frac{M}{K}) = \frac{M}{K}$, to prove M = K since $C \subseteq M$, hence $C = M \cap C = (A+K) \cap C = A+(K \cap C)$, (by modular law), since $A \subseteq B$, $C = B+(K \cap C)$, to prove $J(\frac{C}{K \cap C}) = \frac{C}{K \cap C}$, by the (Second isomorphism), $\frac{C}{K \cap C} \cong \frac{C+K}{K} \cong \frac{M}{K}$, but $J(\frac{M}{K}) = \frac{M}{K}$, then $J(\frac{C}{K \cap C}) = \frac{C}{K \cap C}$, since $B \ll_J C$, then $C = K \cap C$ and $C \subseteq K$ but $A \subseteq C$ hence $A \subseteq K$ then A + K = K, since A + K = M, then K = M and hence $A \ll_J M$.

Note : The converse of Proposition (2.8) is not true in general . As the following example shows . $\mathbb{Z} \subseteq \mathbb{Z}_{p^{\infty}} \subseteq \mathbb{Z} \oplus \mathbb{Z}_{p^{\infty}}$ it is clear that $\mathbb{Z} \ll_{I} \mathbb{Z} \oplus \mathbb{Z}_{p^{\infty}}$, but $\mathbb{Z}_{p^{\infty}}$ is not J– small in $\mathbb{Z} \oplus \mathbb{Z}_{p^{\infty}}$.

Definition (2.9) : A non-zero R-module M is called Jacobson-hollow module (for short J-hollow) if every proper submodule of M is a J-small submodule of M.

Examples and Remarks (2.10) :

1) It is clear that every hollow module is J-hollow module . But the converse in general is not true . For example \mathbb{Z}_6 as \mathbb{Z} -module . It is clear every proper submodule of \mathbb{Z}_6 is J- small , but not small , hence \mathbb{Z}_6 as \mathbb{Z} -module is J-hollow , but not hollow .

2) \mathbb{Z}_4 as \mathbb{Z} -module is J-hollow.

3) Consider $M = \mathbb{Z} \bigoplus \mathbb{Z}_{p^{\infty}}$ as \mathbb{Z} -module is not J-hollow. Since $\mathbb{Z}_{p^{\infty}}$ proper submodule of M but $\mathbb{Z}_{p^{\infty}}$ is not J-small of M.

4) Every simple module is a J-hollow . For example \mathbb{Z}_2 as \mathbb{Z} -module .

Proposition (2.11): A non-zero epimorphic image of J-hollow module is J-hollow.

Proof : Let $f: M \to N$ be an epimorphism, and let M be J-hollow module, with $K \subsetneq N$ to show $K \ll_J N$, since $K \subsetneq N$ then $f^{-1}(k) \subsetneq M$. If $f^{-1}(k) = M$ then K = f(M) = N, hence K = N this is a contradiction and since M is J-hollow, therefore $f^{-1}(k) \ll_J M$, and by Proposition (2.6.(5)), $f(f^{-1}(k)) \ll_J N$, then $K \ll_J N$.

Corollary (2.12): Let M be an R-module and $A \subseteq M$ if M is J-hollow then $\frac{M}{A}$ is J-hollow.

Proof : Let $f: M \to \frac{M}{A}$ be the natural epimorphism , and let M be J-hollow . By Proposition (2.11) we get $\frac{M}{A}$ is J-hollow .

Recall that a submodule N of M is called fully invariant if $f(N) \subseteq N$, for each $f \in End(M)$, and M is called duo module if every submodule of M is fully invariant [4].

Proposition (2.13) : Let $M = M_1 \bigoplus M_2$, M is due module then M is J-hollow if and only if M_1 and M_2 are J-hollow. Provided $A \cap M_i \neq M_i$ for all i = 1, 2.

Proof : \Rightarrow Let M is J-hollow and $A_1 \oplus A_2 \subseteq M_1 \oplus M_2$, with $A_1 \subseteq M_1$ and $A_2 \subseteq M_2$, and $A_1 \oplus A_2 \ll_J M_1 \oplus M_2 = M$ to show M_1 is J-hollow. Let $\pi_1: M_1 \oplus M_2 \rightarrow M_1$ the projection map, define as follows, $\pi_1 (m_1 + m_2) = m_1$, for all $m_1 + m_2 \in M_1 \oplus M_2$, since $A_1 \oplus A_2 \ll_J M_1 \oplus M_2$, then by Proposition (2.6.(5)), $\pi_1 (A_1 \oplus A_2) \ll_J \pi_1 (M_1 \oplus M_2)$, then, $A_1 \ll_J M_1$, thus M_1 is J-hollow and similarity M_2 is J-hollow.

 $\label{eq:main_states} \begin{array}{l} \displaystyle \xleftarrow{} \ Let \ M_1 \ and \ M_2 \ are \ J-hollow \ to \ show \ M = M_1 \oplus M_2 \ is \ J-hollow \ . \ Let \ A_1 \subsetneq \ M_1 \ and \ A_1 \ll_J M_1 \ , \\ let \ A_2 \varsubsetneq \ M_2 \ and \ A_2 \ll_J M_2 \ , \\ integer \ M_2 \ and \ A_2 \ll_J M_1 \oplus M_2 \ , \\ since \ A_1 \ll_J \ M_1 \subseteq \ M \ , \\ and \ A_2 \ll_J M_2 \ \\ \displaystyle \subseteq \ M \ then \ by \ Proposition(2.6.(4)) \ A_1 \ll_J M \ and \ A_2 \ll_J M \ . \\ By \ Proposition(2.6.(2)) \ A_1 \oplus \ A_2 \ll_J M = \\ M_1 \oplus \ M_2 \ . \end{array}$

3. J-Supplemented Modules and Weakly J-Supplemented Modules

In this section, we give some properties of Jacobson–supplement submodules and weak Jacobson – supplement submodule . There are also some relations and generalizations between supplement submodule and Jacobson -- supplement submodules are also between weak supplement submodule and weak Jacobson-supplement submodule.

Definition (3.1): Let M be any R-module and let N, K be submodules of M. N is called Jacobson supplement of K in M (for short J-supplement) if the N + K = M , and N \cap K \ll_I N. If every submodule of M has J-supplement then M is called J-supplemented .

It easy to prove the following

Remark (3.2): Let M be any R-module and let N, K be a submodules of M. N is J-supplement of K in M if and only if for each $L \subseteq N$ with $J(\frac{N}{L}) = \frac{N}{L}$, and M = L + K implies L = N.

Examples and Remarks (3.3):

1) Every semisimple module is J-supplemented . In particular. \mathbb{Z}_6 as \mathbb{Z} -module is J-supplemented . 2) \mathbb{Q} as \mathbb{Z} -module is not J-supplemented. By Proposition (2.5)

3) Every supplemented is J-supplemented but the converse is not true. See the following example. \mathbb{Z} as \mathbb{Z} -module is J-supplemented but not supplemented. Let $n, m \in \mathbb{N}$, a submodule ($m\mathbb{Z}$) has no supplement in \mathbb{Z} because $m\mathbb{Z} + n\mathbb{Z} = \mathbb{Z}$ and g.c.d (m, n) = 1, and $m\mathbb{Z} \cap n\mathbb{Z} = (m, n)\mathbb{Z}$ not small in $m\mathbb{Z}$. And $n\mathbb{Z}$ is J-supplemented of $m\mathbb{Z}$ since $m\mathbb{Z} + n\mathbb{Z} = \mathbb{Z}$, and $m\mathbb{Z} \cap n\mathbb{Z} = (m n)\mathbb{Z}$, $(m n)\mathbb{Z} + k\mathbb{Z} = \mathbb{Z}$, and for each $k\mathbb{Z} \subseteq \mathbb{Z}$, $J(\frac{\mathbb{Z}}{k\mathbb{Z}}) \neq \frac{\mathbb{Z}}{k\mathbb{Z}}$, thus $n\mathbb{Z}$ is J-supplemented of $m\mathbb{Z}$ in \mathbb{Z} .

Proposition (3.4) : Let M be a J-supplemented module and let $N \subseteq M$ then $\frac{M}{N}$ is a J-supplemented. **Proof :** Let $\frac{K}{N} \subseteq \frac{M}{N}$ to prove $\frac{K}{N}$ has J-supplement in $\frac{M}{N}$, $K \subseteq M$, and M is J-supplemented, then There exists $L \subseteq M$ such that M = K + L, and $K \cap L \ll_J L$, now $\frac{M}{N} = \frac{K+L}{N} = \frac{K}{N} + \frac{L+N}{N}$, to prove $\frac{K}{N} \cap \frac{L+N}{N} \ll_J \frac{L+N}{N}$, let $(\frac{K}{N} \cap \frac{L+N}{N}) + \frac{V}{N} = \frac{L+N}{N}$ with $J(\frac{L+N}{V}) = \frac{L+N}{V}$ to prove $\frac{V}{N} = \frac{L+N}{N}$, $\frac{K \cap (L+N)}{N} = \frac{N+(K \cap L)}{N}$, then $\frac{N+(K \cap L)}{N} + \frac{V}{N} = \frac{L+N}{N}$, and $N + (K \cap L) + V = L + N$, and $N \subseteq V$ then $(K \cap L) + V = L + N$, and $J(\frac{L+N}{V}) = \frac{L+N}{V}$, but $K \cap L \ll_J L \subseteq L + N$ and by Proposition (2.6.(4)), $K \cap L \ll_J L + N$, thus V = L + N and $\frac{V}{N} = \frac{L+N}{N}$. **Proposition (3.5):** Let M_1 , $U \subseteq M$, and let M_1 be J-supplemented module . If $M_1 + U$ has a L-supplement in M then so does U

a J-supplement in M then so does U.

Proof: Since $M_1 + U$ has a J-supplement in M, then there exists $X \subseteq M$, such that $X + (M_1 + U) = M$, and $X \cap (M_1 + U) \ll_J X$. Since M_1 is J-supplemented module , then there exists $Y \subseteq M_1$ such that $(X + U) \cap M_1 + Y = M_1$ and $(X + U) \cap Y \ll_J Y$. Thus we have X + U + Y = M, and $(X + U) \cap Y$ «I Y, that is Y is a J-supplement of X + U in M. Next, we will show that X + Y is a J-supplement of U in M, it is clear that (X + Y) + U = M, so it suffices to show that $(X + Y) \cap U \ll_I X + Y$ since $Y + U \subseteq M_1 + U$, by Proposition (2.6.(4)), $X \cap (Y + U) \subseteq X \cap (M_1 + U) \ll_J X$. Thus by Proposition (2.6. (5)), $(X + Y) \cap U \subseteq X \cap (Y + U) + Y \cap (X + U) \ll_I X + Y$.

Proposition (3.6):Let $M = M_1 \bigoplus M_2$, then M_1 and M_2 are J-supplemented module if and only if M is J-supplemented module.

Proof : \Rightarrow Let $U \subseteq M$ since $M_1 + M_2 + U = M$, trivially has a J-supplement in M. By Proposition (3.5) then M₂ + U has a J-supplement in M and by Proposition (3.5) again U has a J-supplement in M,

so M is a J-supplemented module . $\Leftarrow M_2 \cong \frac{M}{M_1}$, since M is a J-supplemented module and by Proposition (3.4) $\frac{M}{M_1}$ is a J-supplemented module . Thus M_2 is a J-supplemented module . Similarity from M_1 is a J-supplemented module.

Corollary (3.7): Let $M = M_1 \bigoplus M_2$ be a duo module , N and L are submodule of M_1 , if N is a J–supplement of L in M_1 , then $N \oplus M_2$ is J–supplement of L in M .

Proof : Let N be J-supplement of L in M_1 , then $M_1 = N + L$ and $N \cap L \ll_I N$ since $M = M_1 \bigoplus M_2$, then $M = (N + L) \bigoplus M_2$, hence $M = L + (N \bigoplus M_2)$, but $(N \bigoplus M_2) \cap L = (N \bigoplus M_2) \cap M_1 \cap L =$ $N\,\cap\,L\,\ll_J\,N$. And by Proposition (2.6.(4)) , then $N\,\cap\,L\,\ll_J\,N\,\oplus\,M_2$, hence $N\,\oplus\,M_2$ is a J-supplement of L in M.

Proposition (3.8): Let M be any R-module and let V, U be submodule of M, V is a J - supplement of U in M, then $\frac{V+L}{L}$ is J-supplement of $\frac{U}{L}$ in $\frac{M}{L}$, for $L \subseteq U$. **Proof:** Since V is a J-supplement of U in M. Then M = U + V and $U \cap V \ll_J M$ for $L \subseteq U$ we have

 $U \cap (V + L) = (U \cap V) + L \text{ (by modular law), and } \frac{U}{L} \cap (\frac{V+L}{L}) = \frac{(U \cap V) + L}{L}, \text{ since } U \cap V \ll_J V,$ it follows that $\frac{(U \cap V) + L}{L} \ll_J \frac{V+L}{L}$. Now $\frac{M}{L} = \frac{U+V}{L} = \frac{U}{L} + \frac{V+L}{L}$. Therefor $\frac{V+L}{L}$ is a J-supplement of $\frac{U}{L}$ in $\frac{M}{L}$

Proposition (3.9): Let M be an R-module . If A has a J-supplement submodule in M, Then $\frac{A}{N}$ has a J-supplement submodule in $\frac{M}{N}$, where N is submodule of A.

Proof : Since A has J-supplement in M then there exists submodule of M. and $A \cap K \ll_J A$. Now we have $\frac{A}{N} + \frac{K+N}{N} = \frac{M}{N}$, to show $\frac{A}{N} \cap \frac{K+N}{N} \ll_J \frac{A}{N}$, $\frac{A}{N} \cap \frac{K+N}{N} = \frac{A \cap (K+N)}{N} = \frac{(A \cap K) + N}{N}$ (by modular law). Let $\frac{(A \cap K) + N}{N} + \frac{L}{N} = \frac{A}{N}$, with $J(\frac{A}{L}) = \frac{A}{L}$. To prove $\frac{L}{N} = \frac{A}{N}$, where $L \subseteq A$ and $N \subseteq L$ then $\frac{(A \cap K) + N + L}{N} = \frac{A}{N}$, hence $(A \cap K) + N + L = A$, but $N \subseteq L$ then $(A \cap K) + L = A$, but $A \cap K \ll_J A$ and $J(\frac{A}{L}) = \frac{A}{L}$, then L = A and hence $\frac{L}{N} = \frac{A}{N}$, then $\frac{A}{N} \cap \frac{K+N}{N} \ll_J \frac{A}{N}.$ **Proposition (3.10) :** Let U,V be a submodules of an R-module M and let V be a J-supplement of U

in M if $K \ll_I M$ then V is J-supplement of U + K.

Proof : Let V + (U + K) = M, to prove $V \cap (U + K) \ll_J V$, let $V \cap (U + K) + X = V$, with $J(\frac{V}{x}) = V$ $\frac{V}{x} \text{ to prove } V = X, M = V + (U + K) = V \cap (U + K) + X + (U + K) = X + (U + K) = (U + X) + K$ K, to prove $J(\frac{M}{U+X}) = \frac{M}{U+X}$, since $\frac{M}{U+X} = \frac{V + (U+K) + X}{U+X} = \frac{V + (U+X)}{(U+X)} \cong \frac{V}{V \cap (U+X)} = \frac{V}{X + (U \cap V)}$ by (Second isomorphism and modular law). Since $J(\frac{V}{X}) = \frac{V}{X}$, by Corollary (2.3), we get $J(\frac{V}{X + (U \cap V)})$ $= \frac{V}{X + (U \cap V)}, \text{ hence } J(\frac{M}{U + X}) = \frac{M}{U + X}, \text{ since } K \ll_J M \text{ then } M = U + X, \text{ but } M = U + V, \text{ and } X \subseteq V \text{ and } X \in V \text{ and } X \subseteq V \text{ and } X \subseteq V \text{ and } X \subseteq V \text{ and } X \in V \text{$ $J(\frac{v}{x}) = \frac{v}{x}$, then V = X, by Remark (3.2).

Proposition (3.11): Let M be any R-module and let V be J-supplement of W in M and $K \subseteq V$ then $K \ll_I M$ if and only if $K \ll_I V$.

Proof: \Longrightarrow Let K + X = V with $J(\frac{V}{X}) = \frac{V}{X}$ to prove V = X, but V + W = M and $V \cap W \ll_J V$, then $M = (K + X) + W \text{ hence } M = K + (X + W) \text{ to prove } J(\frac{M}{X+W}) = \frac{M}{X+W} \text{ ,since } \frac{M}{X+W} = \frac{V + (X+W)}{(X+W)} \cong \frac{W}{X+W}$ $\frac{v}{v \cap (x+w)} = \frac{v}{x+(v \cap w)}$ by (Second isomorphism and modular law). Since $J(\frac{v}{x}) = \frac{v}{x}$ by Corollary (2.3), we get $J(\frac{V}{X+(V \cap W)}) = \frac{V}{X+(V \cap W)}$, hence $J(\frac{M}{X+W}) = \frac{M}{X+W}$, since $K \ll_J M$ then M = X + W, but M = V + W and $X \subseteq V$ and $J(\frac{V}{x}) = \frac{V}{x}$, then by Remark (3.2), V = X \leftarrow Clearly by Proposition (2.6.(4)).

Proposition (3.12): Let M by any R-module and let V be a J-supplement of U in M, K and T be submodules of V. Then T is J-supplement of K in V if and only if T is J-supplement of U + K in M. **Proof:** \Rightarrow Let T is J-supplement of K in V, then V = T + K and $T \cap K \ll_J V$, Let (U + K) + L = M for $L \subseteq T$ with $J(\frac{T}{L}) = \frac{T}{L}$, to prove T = L. Now $K + L \subseteq V$. Since $\frac{V}{K+L} = \frac{T+(K+L)}{K+L} \cong \frac{T}{T \cap (K+L)} = \frac{T}{T \cap (K+L)}$ $\frac{T}{L+(K \cap T)}$ by (Second isomorphism and modular law), and $J(\frac{T}{L}) = \frac{T}{L}$ by Corollary (2.3), we get $J(\frac{T}{L+(K\cap T)}) = \frac{T}{L+(K\cap T)}$, hence $J(\frac{V}{K+L}) = \frac{V}{K+L}$ and because V is J-supplement of U in M then M = U + V and by Remark (3.2) K + L = V, since $L \subseteq T$ and T is J-supplement of K in V and by Remark (3.2) T = L.

 \leftarrow Let T is J-supplement of U + K in M. Then T + (U + K) = M and T \cap (U + K) \ll_I T. Let T + K = V to prove $T \cap K \ll_I T$ since $T \cap K \subseteq T \cap (U + K) \ll_I T$, then by Proposition (2.6.(1)), $T \cap K \ll_I T$, hence T is J-supplement of K in V.

Let U, V be a submodule of a module M, we will say that U and V are **mutual J-supplements**, if U is J-supplement of V in M and V is J-supplement of U in M.

Corollary (3.13) : Let M by any R-module and let U and V be mutual J-supplements in M . L be

J-supplement of S in U and T be J-supplement of K in V then L + T is J-supplement of K + S in M. **Proof**: Since U = S + L and V is J-supplement of U in M, then by Proposition(3.12) T is J-supplement of S + L + K in M and then $(S + L + K) \cap T \ll_I T$, since V = K + L and U is J-supplement of V in M , then by Proposition (3.12) , L is J-supplement of S + K + T in M and then $(S + K + T) \cap L \ll_I L$, because U = S + L, V = K + T, and M = U + V, then we have M = S + L + K+ T = S + K + L + T, then by Proposition (2.6.(2)), (S + K) \cap (L + T) \subseteq L \cap (S + K + T) + T \cap (S + $K + L \ll_1 L + T$, hence L + T is J-supplement of K + S in M.

Definition (3.14): Let L and N be a submodules of any R-module M. L is called weak J-supplement of N in M. If N + L = M, and $N \cap L \ll_I M$, A module M is called weakly J-supplemented if every submodule of M has a weak J-supplement in M.

Remarks (3.15): It is clear that every J-supplemented is weakly J-supplemented. But the converse in general is not true . See the following example . \mathbb{Q} as \mathbb{Z} -module is weakly J-supplemented but not J-supplemented.

Proposition (3.16): Let M_1 , $K \subseteq M$, and let M_1 be a weakly J-supplemented module. If M_1 + K has a weakly J-supplement in M then so does K.

Proof : By assumption there exists $N \subseteq M$, such that $N + (M_1 + K) = M$, and $N \cap (M_1 + K) \ll_1 M$, since M₁ is weakly J-supplemented module there exists $L \subseteq M_1$ such that $(N + K) \cap M_1 + L = M_1$ and

 $(N + K) \cap L \ll_J M_1$ thus K + N + L = M, and $(N + K) \cap L \ll_J M_1$, and by Proposition (2.6.(4)), $(N + K) \cap L \ll_I M$ that is L is a weakly J-supplement of N + K in M, we will show that N + L is a weakly J-supplement of K in M, it is clear that (N + L) + K = M, so it enough to show that $(N + L) \cap K \ll_{I} M$. Since $(N + L) \cap K \subseteq N \cap (M_{1} + K) + (N + K) \cap L \ll_{I} M$, then $(N+L) \cap K \ll_{I} M$. Therefor N + L is a weakly J-supplement of K in M.

Proposition (3.17): Let $M = M_1 + M_2$ if M_1 and M_2 are a weakly J-supplemented then M is a weakly J-supplemented.

Proof:Let N be a submodule of M. Since $M_1 + M_2 + N = M$, trivially has weakly J-supplement in M. And by Proposition (3.16), $M_2 + N$ has a weakly J-supplement in M. And by Proposition (3.16), again thus N has a weakly J-supplement in M. So M is a weakly J-supplemented in M.

Proposition (3.18) : Let M be a weakly J-supplemented module and $X \subseteq N \subseteq M$ if $X \ll_I M$ implies that $X \ll_I N$, then N is a J-supplement submodule of M.

Proof: Suppose that M is a weakly J-supplemented . So M = N + L, $L \subseteq M$ and $N \cap L \ll_I M$. By our assumption we get $N \cap L \ll_I N$. Hence N is a J-supplement of L in M.

Proposition (3.19) : Let M be a weakly J-supplemented R-module then for every $U, V \subseteq M$ with M = U + V, there exists a weak J-supplement K of U in M with $K \subseteq V$.

Proof : Assume $U, V \subseteq M$ with M = U + V. Since M is weakly J-supplemented, $U \cap V$ has a weak J-supplement T in M. In this case $M = U \cap V + T$ and $(U \cap V) \cap T \ll_I M$. Since $M = U + V = (U \cap V) + V$ T (by modular law), $M = U + (V \cap T)$. Let $K = V \cap T$. Then M = U + K and $U \cap K = U \cap V \cap T \ll_I M$. Hence K is a weak J–supplement of U in M with $K \subseteq V$.

Proposition (3.20) : Let M be an R-module and V is a weak J-supplement of U in M for $L \subseteq U$ then

 $\frac{V+L}{L} \text{ is a weak J-supplement of } \underbrace{U}_{L} \text{ in } \underbrace{M}_{L}.$ **Proof:** Since V is a weak J-supplement of U in M, Then M = U + V and U \cap V \ll_J M for L \subseteq U we have U \cap (V+L) = (U \cap V) + L (by modular law), and $\frac{U}{L} \cap (\underbrace{V+L}{L}) = \underbrace{(U \cap V) + L}_{L}$, since U \cap V \ll_J M, it follows $\underbrace{(U \cap V) + L}_{L} \ll_J \frac{M}{L}$, since $\frac{M}{L} = \underbrace{U+V}_{L} = \underbrace{U}_{L} + \underbrace{V+L}_{L}$ and $\frac{U}{L} \cap (\underbrace{V+L}{L}) = \underbrace{(U \cap V) + L}_{L} \ll_J \frac{M}{L}.$ Therefor $\frac{V+L}{L}$ is a weak J-supplement of $\frac{U}{L}$ in $\frac{M}{L}$.

References

- 1. Inoue, T. 1983. Sum of hollow modules, Osaka J. Math, : 331-336
- 2. Keskin, D. 2000. On Lifting Modules, Comm. Algebra: 3427-3440.
- 3. Wisbauer, R. 1991. Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia
- 4. Kasch, F. 1982. Modules and Rings, Academic press, London.