

On Jacobson - Small Submodules

Ali Kabban , Wasan Khalid
Department of mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

Let R be an associative ring with identity and let M be a unitary left R -module . As a generalization of small submodule, we introduce Jacobson-small submodule (briefly J -small submodule) . We state the main properties of J -small submodules and supplying examples and remarks for this concept. Several properties of these submodules are given . Also we introduce Jacobson-hollow modules (briefly J-hollow). We give a characterization of J-hollow modules and gives conditions under which the direct sum of J -hollow modules is J -hollow. We define J-supplemented modules and some types of modules that are related to J-supplemented modules and introduce properties of this types of modules. Also we discuss the relation between them with examples and remarks are needed in our work.

Keywards: J-small submodules, J-hollow modules, J-supplemented modules, weakly J-supplemented modules.

> قسم الرياضيات ، كلية العلوم ، جامعة بغ باداد، بغاداد، العراق

الخلاصة

$$
\begin{aligned}
& \text { لتكن R حلقة تجميعية ذات عنصر محايد وليكن M مقاساً ايسر معرف عليها . كتعميم على المقاس } \\
& \text { الجزئي الصغير, نحن نتدم المقاس الجزئي الصغير من النمط-J . نذكر الخصائص الرئيسية للمقاسات } \\
& \text { الجزئية الصغيرة من النمط-J ونتدم امثلة وملاحظات لهذا المفهوم . يتم اعطاء العديد من خصائص هذه } \\
& \text { المقاسات الجزئية . وايضاً نقدم المقاسات المجوفة من النمط-J . نعطي تعميمات حول المقاسات المجوفة من } \\
& \text { النمط-J ونعطي الثروط التي بموجبها جمع المقاسات المجوفة من النمط-J يعطينا مقاس مجوف من } \\
& \text { النمط-J . نعرف المقاسات المكملة من النمط-J وبعض انواع المقاسات المرتبطة بالمقاسات الدكملة من } \\
& \text { النمط-J ونقدم خصائص هذه الانواع من المقاسات . وايضاً نناقش العلاقة بينهما مع الامثلة والملاحظات التي } \\
& \text { نحتاجها في عملنا . }
\end{aligned}
$$

1. Introduction

Throughout this paper, all rings are associative with unity and modules are unital left R -modules, where R denotes such a ring and M denotes such a module. A submodule N of M is called a small submodule of M if whenever $N+K=M$ for some submodule K of M, we have $M=K$, and in this case we write $\mathrm{N} \ll \mathrm{M}$, See [1]. A nonzero module M is called hollow module , if every proper submodule of M is small in M. See [1] . It is known that the Jacobson radical of M denoted by \mathbf{J} (M) is the sum of all small submodules of M. In fact we use $J(M)$ to introduce a generalization of small submodules , A submodule N of M is called J -small submodule of M (denoted by $\mathrm{N} \ll_{\mathrm{J}} \mathrm{M}$) if

[^0]whenever $\mathrm{M}=\mathrm{N}+\mathrm{K}$, with $\mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{K}}\right)=\frac{\mathrm{M}}{\mathrm{K}}$ implies $\mathrm{M}=\mathrm{K}$. Also, we define J -hollow modules as generalizations hollow modules A non - zero R -module M is called J -hollow module if every proper submodule of M is J -small submodule of M . And give the basic properties of this concept and prove a characterization of J-hollow modules and give certain conditions under which the direct sum of J -hollow modules is J -hollow . Let M be a module. For $\mathrm{N}, \mathrm{L} \subseteq \mathrm{M}, \mathrm{N}$ is a supplement of L in M if N is minimal with respect to $M=N+L$. Equivalently, $M=N+L$ with $N \cap L \ll N$. See [2].
M is called a weakly supplemented module if for each submodule N of M there exists a submodule K of M such that $M=N+K$ and $N \cap K \ll M$. See [3]. A module M is called supplemented if any submodule N of M has a supplement in M . See [3]. As a generalization of supplemented module . We define J -supplemented module, let M be any R -module and let V, U be submodule of M, V is J-supplement of U in M if the $\mathrm{V}+\mathrm{U}=\mathrm{M}$, and $\mathrm{V} \cap \mathrm{U}<_{\mathrm{J}} \mathrm{V}$ and M is called J -supplemented if every submodule of \mathbf{M} has J -supplement submodule. Finally as generalizations of J -supplemented module . We define weakly J -supplemented module, a submodule V is weak J -supplement of U in M if $\mathrm{M}=\mathrm{U}+\mathrm{V}$ and $\mathrm{U} \cap \mathrm{V} \ll_{\mathrm{J}} \mathrm{M}$, and M is called weakly J -supplemented if every submodule of M has J -supplement in M .

2. J-Small submodules and J-Hollow Modules .

In this section, we introduce J -small submodules as a generalization of small submodules, we illustrate this concept by examples and remarks and give the properties of J -small submodules. As a generalization hollow modules and by using the concept of J -small submodule we introduce J-hollow module .
Definition (2.1) : Let M be any R -module a submodule N of M is called Jacobson-small (for short J-small, denoted by $\left.N \ll_{J} M\right)$ if whenever $M=N+K, K \subseteq M$, such that $J\left(\frac{M}{K}\right)=\frac{M}{K}$ implies $M=K$ Before we prove some properties of J -small submodule, we need the following .
Proposition (2.2) : Let A, B be submodule of an $R-\operatorname{module} M$ if $A \subseteq B \subseteq M$ and $J\left(\frac{M}{A}\right)=\frac{M}{A}$, then $J\left(\frac{M}{B}\right)=\frac{M}{B}$
Proof: Let $f: \frac{\mathrm{M}}{\mathrm{A}} \rightarrow \frac{\mathrm{M}}{\mathrm{B}}$ be an epimorphism, be defined by $f(m+\mathrm{A})=m+\mathrm{B}$, since $f\left(\mathrm{~J}\left(\frac{\mathrm{M}}{\mathrm{A}}\right)\right) \subseteq$ $\mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{B}}\right)$. Hence $f\left(\frac{\mathrm{M}}{\mathrm{A}}\right)=\frac{\mathrm{M}}{\mathrm{B}} \subseteq \mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{B}}\right)$. Therefor $\mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{B}}\right)=\frac{\mathrm{M}}{\mathrm{B}}$.
Corollary (2.3) : Let M be any $R-$ module, and let A, B be submodule of M. If $J\left(\frac{M}{A}\right)=\frac{M}{A}$, then $J\left(\frac{M}{A+B}\right)=\frac{M}{A+B}$.
Examples (2.4) :

1) It is clear that every small submodule of any $R-$ module M is J-small. But the convers is not true in general. For example \mathbb{Z}_{6} as \mathbb{Z}-module, let $A=\{\overline{0}, \overline{3}\}, B=\{\overline{0}, \overline{2}, \overline{4}\}, A+B=\mathbb{Z}_{6}$ with $\mathrm{J}\left(\frac{\mathbb{Z}_{6}}{\mathrm{~B}}\right) \neq \frac{\mathbb{Z}_{6}}{\mathrm{~B}}$. Thus A is J -small submodule of \mathbb{Z}_{6} but not small in \mathbb{Z}_{6}.
2) \mathbb{Z}_{4} as \mathbb{Z}-module , by (1), $\{\overline{0}\}$ and $\{\overline{0}, \overline{2}\}$ are J-small in \mathbb{Z}_{4}
3) Consider $M=\mathbb{Z} \oplus \mathbb{Z}_{p^{\infty}}$ as \mathbb{Z} - module Since $\frac{M}{\mathbb{Z}} \cong \mathbb{Z}_{p^{\infty}}$, then $J\left(\frac{M}{\mathbb{Z}}\right) \cong J\left(\mathbb{Z}_{p^{\infty}}\right)=\mathbb{Z}_{p^{\infty}} \cong \frac{M}{\mathbb{Z}}$. $J\left(\frac{M}{\mathbb{Z}}\right)=\frac{M}{\mathbb{Z}}$, but $M \neq \mathbb{Z}$. This mean that $\mathbb{Z}_{p} \infty$ is not J-small in M.
Proposition (2.5) : Let M be an R-module. If $J(M)=M$ and $A \subseteq M$. Then $A \ll_{J} M$ if and only if A $\ll M$.
Proof: \Rightarrow Let $L \subseteq M$ and let $A+K=M$, to prove $K=M$, we claim that $J\left(\frac{M}{K}\right)=\frac{M}{K}$, let $f: \mathrm{M} \rightarrow \frac{\mathrm{M}}{\mathrm{K}}$ be the natural epimorphism since $f(\mathrm{~J}(\mathrm{M})) \subseteq \mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{K}}\right)$, and $\mathrm{J}(\mathrm{M})=\mathrm{M}$, then $f(\mathrm{M}) \subseteq$ $J\left(\frac{M}{K}\right)$, therefore $\frac{M}{K} \subseteq J\left(\frac{M}{K}\right)$ and $J\left(\frac{M}{K}\right)=\frac{M}{K}$, since $A \ll_{J} M$ then $K=M$, hence $A \ll M$. \Longleftarrow Clearly by (Examples 2.4.(1)) .
Note: By Proposition (2.5) we can show easily that the infinite sum of J -small is not J -small .
Proposition (2.6) : Let M be any R -module .
4) Let $A \subseteq B \subseteq M$. Then $B \ll_{J} M$ if and only if $\frac{B}{A}<_{J} \frac{M}{A}$ and $A<_{J} M$.
5) Let A and B be a submodules of M . Then $\mathrm{A}+\mathrm{B}<_{J} \mathrm{M}$ if and only if $\mathrm{A}<_{J} \mathrm{M}$ and $\mathrm{B}<_{J} \mathrm{M}$.
6) Let $A_{1}, A_{2}, \ldots, A_{n} \leq M$. Then $\sum_{i=1}^{n} A_{i}<{ }_{J} M$ if and only if $A_{i} \ll_{J} M, \forall i=1,2, \ldots, n$
7) Let $A \subseteq B$ be submodules of M. If $A \ll_{J} B$, then $A \ll_{J} M$.
8) Let $f: \mathrm{M} \rightarrow \mathrm{N}$ be a homomorphism. If $\mathrm{A} \ll_{\mathrm{J}} \mathrm{M}$, then $f(\mathrm{~A}) \ll_{\mathrm{J}} \mathrm{N}$.
9) Let $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ be R -module and let $\mathrm{A}_{1} \subseteq \mathrm{M}_{1}$ and $\mathrm{A}_{2} \subseteq \mathrm{M}_{2}$. Then $\mathrm{A}_{1} \oplus A_{2} \ll_{J} M_{1} \oplus M_{2}$ if and only if $A_{1} \lll M_{1}$ and $A_{2} \ll{ }_{J} M_{2}$.
Proof: $(1): \Rightarrow$ Let $B \ll_{J} M$. To prove $\frac{B}{A} \ll_{J} \frac{M}{A}$, let $L \subseteq M$ and $\frac{L}{A} \subseteq \frac{M}{A}$, suppose that $\frac{B}{A}+\frac{L}{A}$ $=\frac{M}{A}$ and $J\left(\frac{M}{L}\right)=\frac{M}{L}$ to prove $\frac{M}{A}=\frac{L}{A}$, since $\frac{B+L}{A}=\frac{M}{A}$ then $B+L=M$ and $B \ll_{J} M$, hence $\mathrm{M}=\mathrm{L}$ and $\frac{\mathrm{M}}{\mathrm{A}}=\frac{\mathrm{L}}{\mathrm{A}}$. Therefore $\frac{\mathrm{B}}{\mathrm{A}} \ll_{J} \frac{\mathrm{M}}{\mathrm{A}}$, to prove $\mathrm{A} \ll \mathrm{J} \mathrm{M}$, let $\mathrm{L} \subseteq \mathrm{M}$ suppose that $\mathrm{A}+\mathrm{L}=\mathrm{M}$ and $\mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{L}}\right)=\frac{\mathrm{M}}{\mathrm{L}}$, since $\mathrm{B} \ll_{\mathrm{J}} \mathrm{M}$ and $\mathrm{A} \subseteq \mathrm{B}$ then $\mathrm{B}+\mathrm{L}=\mathrm{M}$ and since $\mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{L}}\right)=\frac{\mathrm{M}}{\mathrm{L}}$, thus $\mathrm{M}=\mathrm{L}$, so $\mathrm{A} \ll_{\mathrm{J}} \mathrm{M}$.
\Longleftarrow suppose that $\frac{B}{A}<_{J} \frac{M}{A}$ and $A \ll_{J} M$ to prove $B \ll_{J} M$. Let $L \subseteq M$ suppose that $B+L=M$ and $\mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{L}}\right)=\frac{\mathrm{M}}{\mathrm{L}}$ to prove $\mathrm{M}=\mathrm{L}, \frac{\mathrm{M}}{\mathrm{A}}=\frac{\mathrm{B}+\mathrm{L}}{\mathrm{A}}$ since $\mathrm{A} \subseteq \mathrm{B}$ then $\mathrm{A}+\mathrm{B}=\mathrm{B}$, so $\frac{\mathrm{B}+\mathrm{L}}{\mathrm{A}}=\frac{\mathrm{B}+\mathrm{L}+\mathrm{A}}{\mathrm{A}}=$ $\frac{B}{A}+\frac{L+A}{A}=\frac{M}{A}$, to prove $J\left(\frac{M}{\frac{A}{L+A}}\right)=J\left(\frac{M}{L+A}\right)=\frac{M}{L+A}$, since $J\left(\frac{M}{L}\right)=\frac{M}{L}$, then by Corollary (2.3) $J\left(\frac{M}{L+A}\right)=\frac{M}{L+A}$, since $\frac{\frac{B}{A}}{A} \ll_{J} \frac{M}{A}$. Then $\frac{L+A}{A}=\frac{M}{A}$ thus $A+L=M$, since $A \ll_{J} M$, so $\mathrm{M}=\mathrm{L}$, therefore $\mathrm{B}<_{J} \mathrm{M}$.
(2) \Rightarrow Let $A+B \ll_{J} M$ to show $A \ll_{J} M$ and $B \ll_{J} M$, let $A+C=M$ and $J\left(\frac{M}{C}\right)=\frac{M}{C}$ to prove $M=C$, since $A+B \ll_{J} M$ then $(A+B)+C=M$, and since $J\left(\frac{M}{C}\right)=\frac{M}{C}$, thus $M=C$, then $A \ll_{J} M$, and similarity $\mathrm{B} \ll_{\mathrm{J}} \mathrm{M}$
\Leftarrow Let $\mathrm{A}<_{\mathrm{J}} \mathrm{M}$ and $\mathrm{B}<_{\mathrm{J}} \mathrm{M}$ to show $\mathrm{A}+\mathrm{B}<_{\mathrm{J}} \mathrm{M}$, let $\mathrm{A}+\mathrm{B}+\mathrm{C}=\mathrm{M}$, and $\mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{C}}\right)=\frac{\mathrm{M}}{\mathrm{C}}$ to prove $M=C$ since $A \lll J$, then $B+C=M$, since $J\left(\frac{M}{C}\right)=\frac{M}{C}$, then by Corollary (2.3) $J\left(\frac{M}{B+C}\right)=\frac{M}{B+C}$, thus $B+C=M$, and since $B \ll_{J} M$, and $J\left(\frac{M}{C}\right)=\frac{M}{C}$, then $M=C$ and $A+B \ll_{J} M$.
(3) By induction. Let $A_{1}+A_{2}+B=M$, with $J\left(\frac{M}{B}\right)=\frac{M}{B}$, by Corollary (2.3) $J\left(\frac{M}{A_{2}+B}\right)=\frac{M}{A_{2}+B}$, since $A_{1} \ll_{J} M$,we get $M=A_{2}+B$, since $A_{2} \ll_{J} M$, thus $M=B$. Suppose the relate is true for all $K \in N$. Let $A_{1}+A_{2}+\ldots+A_{n}+B=M$ with $J\left(\frac{M}{B}\right)=\frac{M}{B}$. Then $\left(A_{1}+A_{2}+\ldots+A_{n-1}\right)+A_{n}+B=M$, since $A_{n} \ll J M$, and $J\left(\frac{M}{A_{1}+A_{2}+\ldots+A_{n-1}+B}\right)=\frac{M}{A_{1}+A_{2}+\ldots+A_{n-1}+B}$, hence we get $A_{1}+A_{2}+\ldots+A_{n-1}+$ $B=M$. Continue until we get $A_{1}+B=M, A_{1} \ll_{J} M$ thus $M=B$
(4) Suppose that $A+C=M$ and $J\left(\frac{M}{C}\right)=\frac{M}{C}$. To prove $M=C$, then $B \cap(A+C)=M \cap B$ and $B \cap(A+C)=B$ (by modular law), $A+(B \cap C)=B$, to prove $J\left(\frac{B}{B \cap C}\right)=\frac{B}{B \cap C}$, by the (Second isomorphism) $\frac{B}{B \cap C} \cong \frac{B+C}{C} \cong \frac{M}{C}$. But $J\left(\frac{M}{C}\right)=\frac{M}{C}$, hence $J\left(\frac{B}{B \cap C}\right)=\frac{B}{B \cap C}$ and $A \ll_{J} B$, then $\mathrm{B} \cap \mathrm{C}=\mathrm{B}$, so $\mathrm{B} \subseteq \mathrm{C}$ and $\mathrm{A} \subseteq \mathrm{C}$, but $\mathrm{A}+\mathrm{C}=\mathrm{M}$, then $\mathrm{M}=\mathrm{C}$, thus $\mathrm{A} \ll_{\mathrm{J}} \mathrm{M}$.
(5) By the (First isomorphism) $\frac{\mathrm{M}}{\operatorname{Ker} f} \cong f(\mathrm{M})$, but $\mathrm{M}=\mathrm{M}+\operatorname{Ker} f, \frac{\mathrm{M}+\operatorname{Ker} f}{\operatorname{Ker} f} \cong f(\mathrm{M})$, but $\mathrm{A} \subseteq \mathrm{M}$, then $\frac{\mathrm{A}+\operatorname{Ker} f}{\operatorname{Ker} f} \cong f(\mathrm{~A})$, and $\mathrm{A} \subseteq \mathrm{A}+\operatorname{Ker} f$, since $\mathrm{A}<_{\mathrm{J}} \mathrm{M} . T h e n \mathrm{~A}+\operatorname{Ker} f<_{\mathrm{J}} \mathrm{M}$, by Proposition (2.6.(1)),$\frac{\mathrm{A}+\operatorname{Ker} f}{\operatorname{Ker} f} \ll_{\mathrm{J}} \frac{\mathrm{M}}{\operatorname{Ker} f}$ since $f(\mathrm{~A}) \cong \frac{\mathrm{A}+\operatorname{Ker} f}{\operatorname{Ker} f}<_{\mathrm{J}} \frac{\mathrm{M}}{\operatorname{Ker} f} \cong f(\mathrm{M})$, then $f(\mathrm{~A}) \ll_{\mathrm{J}} f(\mathrm{M}) \subseteq \mathrm{N}$, by Proposition (2.6.(4)), $f(\mathrm{~A}) \ll_{\mathrm{J}} \mathrm{N}$.
(6) \Rightarrow Let $A_{1} \oplus A_{2} \ll_{J} M_{1} \oplus M_{2}$, to show $A_{1} \lll J M_{1}$ and $A_{2} \ll_{J} M_{2}$ Let $\pi_{1}: M_{1} \oplus M_{2} \rightarrow M_{1}$ the projection map define as follows, $\pi_{1}\left(m_{1}+m_{2}\right)=m_{1}$, for all $m_{1}+m_{2} \in M_{1} \oplus M_{2}$. Since $A_{1} \oplus A_{2} \ll_{J} M_{1} \oplus M_{2}$, then by Proposition (2.6.(5)), $\pi_{1}\left(A_{1} \oplus A_{2}\right) \ll_{J} \pi_{1}\left(M_{1} \oplus M_{2}\right)$, by definition of π_{1}. We obtain, $A_{1}<{ }_{J} M_{1}$, and similarity $A_{2}<{ }_{J} M_{2}$.
\Leftarrow Let $A_{1} \ll_{J} M_{1}$ and $A_{2} \ll_{J} M_{2} . T$ show $A_{1} \oplus A_{2} \ll_{J} M_{1} \oplus M_{2}, A_{1} \ll_{J} M_{1} \subseteq M$, and $A_{2} \ll_{J} M_{2} \subseteq M$, then by Proposition (2.6.(4)), $\mathrm{A}_{1} \ll_{\mathrm{J}} \mathrm{M}$ and $\mathrm{A}_{2}<{ }_{\mathrm{J}} \mathrm{M}$. By Proposition (2.6.(2)), $\mathrm{A}_{1} \oplus \mathrm{~A}_{2}<{ }_{\mathrm{J}} \mathrm{M}=$ $M_{1} \oplus M_{2}$.

Proposition (2.7): Let M be an R -module and $\mathrm{A} \subseteq \mathrm{B} \subseteq \mathrm{M}$. If B is a direct summand of M and $\mathrm{A} \ll_{J} \mathrm{M}$, then $\mathrm{A} \ll_{J} \mathrm{~B}$.
Proof: Let $A+L=B$, and $J\left(\frac{B}{L}\right)=\frac{B}{L}$. To prove $B=L$. Suppose that $M=B \oplus B_{1}, M=A+L+B_{1}$, then by Corollary (2.3), J($\left.\frac{\mathrm{M}}{\mathrm{L}+\mathrm{B}_{1}}\right)=\frac{\mathrm{M}}{\mathrm{L}+\mathrm{B}_{1}}$ and $\mathrm{A} \ll_{J} \mathrm{M}$, then $\mathrm{M}=\mathrm{L}+\mathrm{B}_{1}$ but $\mathrm{L} \cap \mathrm{B}_{1}=0$, then $\mathrm{M}=\mathrm{L} \oplus \mathrm{B}_{1}$, but $\mathrm{M}=\mathrm{B} \oplus \mathrm{B}_{1}$ and $\mathrm{L} \subseteq \mathrm{B}$, then $\mathrm{B}=\mathrm{L}$, and hence $\mathrm{A} \ll_{J} \mathrm{~B}$.
Proposition (2.8) : Let M be an R -module and let A, B and C are submodules of M with $\mathrm{A} \subseteq \mathrm{B} \subseteq \mathrm{C}$ $\subseteq \mathrm{M}$, if $\mathrm{B} \ll_{\mathrm{J}} \mathrm{C}$ then $\mathrm{A} \ll_{\mathrm{J}} \mathrm{M}$.
Proof: Suppose that $A+K=M$ and $J\left(\frac{M}{K}\right)=\frac{M}{K}$, to prove $M=K$ since $C \subseteq M$, hence $C=M \cap$ $\mathrm{C}=(\mathrm{A}+\mathrm{K}) \cap \mathrm{C}=\mathrm{A}+(\mathrm{K} \cap \mathrm{C}),\left(\right.$ by modular law), since $\mathrm{A} \subseteq \mathrm{B}, \mathrm{C}=\mathrm{B}+(\mathrm{K} \cap \mathrm{C})$, to prove $\mathrm{J}\left(\frac{\mathrm{C}}{\mathrm{K} \cap \mathrm{C}}\right)=$ $\frac{\mathrm{C}}{\mathrm{K} \cap \mathrm{C}}$, by the (Second isomorphism), $\frac{\mathrm{C}}{\mathrm{K} \cap \mathrm{C}} \cong \frac{\mathrm{C}+\mathrm{K}}{\mathrm{K}} \cong \frac{\mathrm{M}}{\mathrm{K}}$, but $\mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{K}}\right.$) $=\frac{\mathrm{M}}{\mathrm{K}}$, then $\mathrm{J}\left(\frac{\mathrm{C}}{\mathrm{K} \cap \mathrm{C}}\right)=\frac{\mathrm{C}}{\mathrm{K} \cap \mathrm{C}}$, since $\mathrm{B} \ll_{\mathrm{J}} \mathrm{C}$, then $\mathrm{C}=\mathrm{K} \cap \mathrm{C}$ and $\mathrm{C} \subseteq \mathrm{K}$ but $\mathrm{A} \subseteq \mathrm{C}$ hence $\mathrm{A} \subseteq \mathrm{K}$ then $\mathrm{A}+\mathrm{K}=\mathrm{K}$, since $\mathrm{A}+\mathrm{K}=$ M, then $K=M$ and hence $A \ll_{J} M$.
Note: The converse of Proposition (2.8) is not true in general. As the following example shows . $\mathbb{Z} \subseteq \mathbb{Z}_{\mathbf{p}^{\infty}} \subseteq \mathbb{Z} \oplus \mathbb{Z}_{\mathbf{p}^{\infty}}$ it is clear that $\mathbb{Z} \ll_{J} \mathbb{Z} \oplus \mathbb{Z}_{\mathbf{p}^{\infty}}$, but $\mathbb{Z}_{\mathbf{p}^{\infty}}$ is not J - small in $\mathbb{Z} \oplus \mathbb{Z}_{\mathbf{p}^{\infty}}$.
Definition (2.9) : A non-zero R-module M is called Jacobson-hollow module (for short J-hollow) if every proper submodule of M is a J -small submodule of M .
Examples and Remarks (2.10) :

1) It is clear that every hollow module is J-hollow module . But the converse in general is not true . For example \mathbb{Z}_{6} as \mathbb{Z}-module . It is clear every proper submodule of \mathbb{Z}_{6} is J - small , but not small , hence \mathbb{Z}_{6} as \mathbb{Z}-module is J-hollow , but not hollow .
2) \mathbb{Z}_{4} as \mathbb{Z}-module is J-hollow.
3) Consider $M=\mathbb{Z} \oplus \mathbb{Z}_{p^{\infty}}$ as \mathbb{Z}-module is not J-hollow. Since $\mathbb{Z}_{p^{\infty}}$ proper submodule of M but $\mathbb{Z}_{p^{\infty}}$ is not J -small of M .
4) Every simple module is a J-hollow . For example \mathbb{Z}_{2} as \mathbb{Z}-module .

Proposition (2.11) : A non-zero epimorphic image of J-hollow module is J-hollow.
Proof : Let $f: \mathrm{M} \rightarrow \mathrm{N}$ be an epimorphism, and let M be J -hollow module, with $\mathrm{K} \subsetneq \mathrm{N}$ to show $\mathrm{K}<_{\mathrm{J}} \mathrm{N}$, since $\mathrm{K} \subsetneq \mathrm{N}$ then $f^{-1}(\mathrm{k}) \subsetneq \mathrm{M}$. If $f^{-1}(\mathrm{k})=\mathrm{M}$ then $\mathrm{K}=f(\mathrm{M})=\mathrm{N}$, hence $\mathrm{K}=\mathrm{N}$ this is a contradiction and since M is J -hollow, therefore $f^{-1}(\mathrm{k}) \ll_{\mathrm{J}} \mathrm{M}$, and by Proposition (2.6.(5)), $f\left(f^{-1}(\mathrm{k})\right) \ll_{\mathrm{J}} \mathrm{N}$, then $\mathrm{K} \ll_{\mathrm{J}} \mathrm{N}$.
Corollary (2.12) : Let M be an R-module and $A \subseteq M$ if M is J-hollow then $\frac{M}{A}$ is J-hollow .
Proof : Let $f: \mathrm{M} \rightarrow \frac{\mathrm{M}}{\mathrm{A}}$ be the natural epimorphism, and let M be J -hollow. By Proposition (2.11) we get $\frac{\mathrm{M}}{\mathrm{A}}$ is J-hollow.
Recall that a submodule N of M is called fully invariant if $f(\mathrm{~N}) \subseteq \mathrm{N}$, for each $f \in \operatorname{End}(\mathrm{M})$, and M is called duo module if every submodule of M is fully invariant [4].
Proposition (2.13) : Let $M=M_{1} \oplus M_{2}, M$ is duo module then M is J-hollow if and only if M_{1} and M_{2} are J-hollow . Provided $A \cap M_{i} \neq M_{i}$ for all $i=1,2$.
Proof : \Rightarrow Let M is J-hollow and $A_{1} \oplus A_{2} \subsetneq M_{1} \oplus M_{2}$, with $A_{1} \subsetneq M_{1}$ and $A_{2} \subsetneq M_{2}$, and $A_{1} \oplus A_{2} \ll_{J} M_{1} \oplus M_{2}=M$ to show M_{1} is J-hollow. Let $\pi_{1}: M_{1} \oplus M_{2} \rightarrow M_{1}$ the projection map , define as follows, $\pi_{1}\left(m_{1}+m_{2}\right)=m_{1}$, for all $m_{1}+m_{2} \in M_{1} \oplus M_{2}$, since $A_{1} \oplus A_{2}<_{J} M_{1} \oplus M_{2}$, then by Proposition (2.6.(5)), $\pi_{1}\left(A_{1} \oplus A_{2}\right) \ll_{J} \pi_{1}\left(M_{1} \oplus M_{2}\right)$, then, $A_{1}<_{J} M_{1}$, thus M_{1} is J -hollow and similarity M_{2} is J-hollow .
\Leftarrow Let M_{1} and M_{2} are J -hollow to show $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ is J -hollow . Let $\mathrm{A}_{1} \subsetneq \mathrm{M}_{1}$ and $\mathrm{A}_{1}<{ }_{\mathrm{J}} \mathrm{M}_{1}$, let $A_{2} \subsetneq M_{2}$ and $A_{2} \ll_{J} M_{2}$, to show $A_{1} \oplus A_{2} \ll_{J} M_{1} \oplus M_{2}$, since $A_{1} \ll_{J} M_{1} \subseteq M$, and $A_{2} \ll_{J} M_{2}$ $\subseteq M$ then by Proposition(2.6.(4)) $\mathrm{A}_{1} \ll_{J} \mathrm{M}$ and $\mathrm{A}_{2} \ll_{J} \mathrm{M}$. By Proposition(2.6.(2)) $\mathrm{A}_{1} \oplus \mathrm{~A}_{2} \ll_{J} \mathrm{M}=$ $M_{1} \oplus M_{2}$.

3. J-Supplemented Modules and Weakly J-Supplemented Modules

In this section, we give some properties of Jacobson-supplement submodules and weak Jacobson supplement submodule. There are also some relations and generalizations between supplement submodule and Jacobson -supplement submodules are also between weak supplement submodule and weak Jacobson-supplement submodule.
Definition (3.1): Let M be any R-module and let N, K be submodules of M . N is called Jacobson supplement of K in M (for short J-supplement) if the $N+K=M$, and $N \cap K \ll_{J} N$. If every submodule of \mathbf{M} has J -supplement then M is called \mathbf{J}-supplemented .
It easy to prove the following
Remark (3.2): Let M be any R-module and let N, K be a submodules of M . N is J-supplement of K in M if and only if for each $\mathrm{L} \subseteq \mathrm{N}$ with $\mathrm{J}\left(\frac{\mathrm{N}}{\mathrm{L}}\right)=\frac{\mathrm{N}}{\mathrm{L}}$, and $\mathrm{M}=\mathrm{L}+\mathrm{K}$ implies $\mathrm{L}=\mathrm{N}$.
Examples and Remarks (3.3):
1) Every semisimple module is J-supplemented . In particular. \mathbb{Z}_{6} as \mathbb{Z}-module is J-supplemented .
2) \mathbb{Q} as \mathbb{Z}-module is not J-supplemented. By Proposition (2.5)
3) Every supplemented is J-supplemented but the converse is not true. See the following example . \mathbb{Z} as \mathbb{Z}-module is \mathbf{J}-supplemented but not supplemented . Let $n, m \in \mathbb{N}$, a submodule ($m \mathbb{Z}$) has no supplement in \mathbb{Z} because $m \mathbb{Z}+n \mathbb{Z}=\mathbb{Z}$ and g.c.d $(m, n)=1$, and $m \mathbb{Z} \cap n \mathbb{Z}=(m n) \mathbb{Z}$ not small in $m \mathbb{Z}$. And $n \mathbb{Z}$ is \mathbf{J}-supplemented of $m \mathbb{Z}$ since $m \mathbb{Z}+n \mathbb{Z}=\mathbb{Z}$, and $m \mathbb{Z} \cap n \mathbb{Z}=(m n) \mathbb{Z},(m n) \mathbb{Z}+k \mathbb{Z}=\mathbb{Z}$, and for each $k \mathbb{Z} \subseteq \mathbb{Z}, \mathrm{~J}\left(\frac{\mathbb{Z}}{k \mathbb{Z}}\right) \neq \frac{\mathbb{Z}}{k \mathbb{Z}}$, thus $n \mathbb{Z}$ is J -supplemented of $m \mathbb{Z}$ in \mathbb{Z}.
Proposition (3.4) : Let M be a J -supplemented module and let $\mathrm{N} \subseteq \mathrm{M}$ then $\frac{\mathrm{M}}{\mathrm{N}}$ is a J -supplemented . Proof : Let $\frac{\mathrm{K}}{\mathrm{N}} \subseteq \frac{\mathrm{M}}{\mathrm{N}}$ to prove $\frac{\mathrm{K}}{\mathrm{N}}$ has J-supplement in $\frac{\mathrm{M}}{\mathrm{N}}, \mathrm{K} \subseteq \mathrm{M}$, and M is J -supplemented, then there exists $L \subseteq M$ such that $M=K+L$, and $K \cap L \ll{ }_{J} L$, now $\frac{M}{N}=\frac{K+L}{N}=\frac{K}{N}+\frac{L+N}{N}$, to prove $\frac{K}{N} \cap \frac{L+N}{N} \lll \frac{L+N}{N}$, let $\left(\frac{K}{N} \cap \frac{L+N}{N}\right)+\frac{V}{N}=\frac{L+N}{N}$ with $J\left(\frac{L+N}{V}\right)=\frac{L+N}{V}$ to prove $\frac{V}{N}=\frac{L+N}{N}$, $\frac{K \cap(L+N)}{N}=\frac{N+(K \cap L)}{N}$, then $\frac{N+(K \cap L)}{N}+\frac{V}{N}=\frac{L+N}{N}$, and $N+(K \cap L)+V=L+N$, and $N \subseteq V$ then $(\mathrm{K} \cap \mathrm{L})+\mathrm{V}=\mathrm{L}+\mathrm{N}$, and $\mathrm{J}\left(\frac{\mathrm{L}+\mathrm{N}}{\mathrm{V}}\right)=\frac{\mathrm{L}+\mathrm{N}}{\mathrm{V}}$, but $\mathrm{K} \cap \mathrm{L}<_{\mathrm{J}} \mathrm{L} \subseteq \mathrm{L}+\mathrm{N}$ and by Proposition (2.6.(4)), $\mathrm{K} \cap \mathrm{L} \ll_{\mathrm{J}} \mathrm{L}+\mathrm{N}$, thus $\mathrm{V}=\mathrm{L}+\mathrm{N}$ and $\frac{\mathrm{V}}{\mathrm{N}}=\frac{\mathrm{L}+\mathrm{N}}{\mathrm{N}}$.
Proposition (3.5): Let $\mathrm{M}_{1}, \mathrm{U} \subseteq \mathrm{M}$, and let M_{1} be J -supplemented module . If $\mathrm{M}_{1}+\mathrm{U}$ has a J -supplement in M then so does U .
Proof: Since $M_{1}+U$ has a J-supplement in M, then there exists $X \subseteq M$, such that $X+\left(M_{1}+U\right)=M$, and $X \cap\left(M_{1}+U\right) \ll{ }_{J} X$. Since M_{1} is J-supplemented module, then there exists $Y \subseteq M_{1}$ such that $(\mathrm{X}+\mathrm{U}) \cap \mathrm{M}_{1}+\mathrm{Y}=\mathrm{M}_{1}$ and $(\mathrm{X}+\mathrm{U}) \cap \mathrm{Y}<_{J} \mathrm{Y}$. Thus we have $\mathrm{X}+\mathrm{U}+\mathrm{Y}=\mathrm{M}$, and $(\mathrm{X}+\mathrm{U}) \cap \mathrm{Y}$ $<_{J} Y$, that is Y is a J-supplement of $X+U$ in M. Next, we will show that $X+Y$ is a J-supplement of U in M, it is clear that $(X+Y)+U=M$, so it suffices to show that $(X+Y) \cap U \ll_{J} X+Y$ since $\mathrm{Y}+\mathrm{U} \subseteq \mathrm{M}_{1}+\mathrm{U}$, by Proposition (2.6.(4)), $\mathrm{X} \cap(\mathrm{Y}+\mathrm{U}) \subseteq \mathrm{X} \cap\left(\mathrm{M}_{1}+\mathrm{U}\right) \ll_{J} \mathrm{X}$. Thus by Proposition (2.6. (5)), $(\mathrm{X}+\mathrm{Y}) \cap \mathrm{U} \subseteq \mathrm{X} \cap(\mathrm{Y}+\mathrm{U})+\mathrm{Y} \cap(\mathrm{X}+\mathrm{U})<_{\mathrm{J}} \mathrm{X}+\mathrm{Y}$.
Proposition (3.6):Let $M=M_{1} \oplus M_{2}$, then M_{1} and M_{2} are J-supplemented module if and only if M is J-supplemented module.
Proof : \Rightarrow Let $\mathrm{U} \subseteq \mathrm{M}$ since $\mathrm{M}_{1}+\mathrm{M}_{2}+\mathrm{U}=\mathrm{M}$, trivially has a J -supplement in M . By Proposition (3.5) then $\mathrm{M}_{2}+\mathrm{U}$ has a J -supplement in M and by Proposition (3.5) again U has a J -supplement in M , so M is a J -supplemented module .
$\Longleftarrow \mathrm{M}_{2} \cong \frac{\mathrm{M}}{\mathrm{M}_{1}}$, since M is a J-supplemented module and by Proposition (3.4) $\frac{\mathrm{M}}{\mathrm{M}_{1}}$ is a J-supplemented module . Thus M_{2} is a J-supplemented module . Similarity from M_{1} is a J-supplemented module.
Corollary (3.7): Let $M=M_{1} \oplus M_{2}$ be a duo module, N and L are submodule of M_{1}, if N is a J-supplement of L in M_{1}, then $N \oplus M_{2}$ is J-supplement of L in M.
Proof : Let N be J-supplement of L in M_{1}, then $M_{1}=N+L$ and $N \cap L \ll{ }_{J} N$ since $M=M_{1} \oplus M_{2}$, then $M=(N+L) \oplus M_{2}$, hence $M=L+\left(N \oplus M_{2}\right)$, but $\left(N \oplus M_{2}\right) \cap L=\left(N \oplus M_{2}\right) \cap M_{1} \cap L=$
$\mathrm{N} \cap \mathrm{L} \ll \mathrm{J} \mathrm{N}$. And by Proposition (2.6.(4)), then $\mathrm{N} \cap \mathrm{L}<_{\mathrm{J}} \mathrm{N} \oplus \mathrm{M}_{2}$, hence $\mathrm{N} \oplus \mathrm{M}_{2}$ is a J-supplement of L in M .
Proposition (3.8): Let M be any R -module and let V , U be submodule of M, V is a J - supplement of U in M , then $\frac{\mathrm{V}+\mathrm{L}}{\mathrm{L}}$ is J -supplement of $\frac{\mathrm{U}}{\mathrm{L}}$ in $\frac{\mathrm{M}}{\mathrm{L}}$, for $\mathrm{L} \subseteq \mathrm{U}$.
Proof: Since V is a J-supplement of U in M. Then $M=U+V$ and $U \cap V \ll_{J} M$ for $L \subseteq U$ we have $\mathrm{U} \cap(\mathrm{V}+\mathrm{L})=(\mathrm{U} \cap \mathrm{V})+\mathrm{L}$ (by modular law $)$, and $\frac{\mathrm{U}}{\mathrm{L}} \cap\left(\frac{\mathrm{V}+\mathrm{L}}{\mathrm{L}}\right)=\frac{(\mathrm{U} \cap \mathrm{V})+\mathrm{L}}{\mathrm{L}}$, since $\mathrm{U} \cap \mathrm{V}<_{\mathrm{J}} \mathrm{V}$, it follows that $\frac{(U \cap V)+L}{L} \ll_{J} \frac{V+L}{L}$. Now $\frac{M}{L}=\frac{U+V}{L}=\frac{U}{L}+\frac{V+L}{L}$. Therefor $\frac{V+L}{L}$ is a $J-$ supplement of $\frac{\mathrm{U}}{\mathrm{L}}$ in $\frac{\mathrm{M}}{\mathrm{L}}$.
Proposition (3.9): Let M be an R-module. If A has a J-supplement submodule in M, Then $\frac{A}{N}$ has a J -supplement submodule in $\frac{\mathrm{M}}{\mathrm{N}}$, where N is submodule of A .
Proof : Since A has J-supplement in M then there exists submodule K of M, such that $A+K=M$, and $A \cap K \lll<A$. Now we have $\frac{A}{N}+\frac{K+N}{N}=\frac{M}{N}$, to show $\frac{A}{N} \cap \frac{K+N}{N} \lll \frac{A}{N}, \frac{A}{N} \cap \frac{K+N}{N}=$ $\frac{A \cap(K+N)}{N}=\frac{(A \cap K)+N}{N}$ (by modular law). Let $\frac{(A \cap K)+N}{N}+\frac{L}{N}=\frac{A}{N}$, with $J\left(\frac{A}{L}\right)=\frac{A}{L}$. To prove $\frac{\mathrm{L}}{\mathrm{N}}=\frac{\mathrm{A}}{\mathrm{N}}$, where $\mathrm{L} \subseteq \mathrm{A}$ and $\mathrm{N} \subseteq \mathrm{L}$ then $\frac{(\mathrm{A} \cap \mathrm{K})+\mathrm{N}+\mathrm{L}}{\mathrm{N}}=\frac{\mathrm{A}}{\mathrm{N}}$, hence $(\mathrm{A} \cap \mathrm{K})+\mathrm{N}+\mathrm{L}=\mathrm{A}$, but $\mathrm{N} \subseteq \mathrm{L}$ then $(A \cap K)+L=A$, but $A \cap K \lll \ll A$ and $J\left(\frac{A}{L}\right)=\frac{A}{L}$, then $L=A$ and hence $\frac{L}{N}=\frac{A}{N}$, then $\frac{A}{N} \cap \frac{K+N}{N} \lll \frac{A}{N}$.
Proposition (3.10) : Let U, V be a submodules of an R -module M and let V be a J -supplement of U in M if $\mathrm{K}<{ }_{J} \mathrm{M}$ then V is J -supplement of $\mathrm{U}+\mathrm{K}$.
Proof: Let $V+(U+K)=M$, to prove $V \cap(U+K) \ll_{J} V$, let $V \cap(U+K)+X=V$, with $J\left(\frac{V}{x}\right)=$ $\frac{\mathrm{V}}{\mathrm{X}}$ to prove $\mathrm{V}=\mathrm{X}, \mathrm{M}=\mathrm{V}+(\mathrm{U}+\mathrm{K})=\mathrm{V} \cap(\mathrm{U}+\mathrm{K})+\mathrm{X}+(\mathrm{U}+\mathrm{K})=\mathrm{X}+(\mathrm{U}+\mathrm{K})=(\mathrm{U}+\mathrm{X})+$ K, to prove $J\left(\frac{M}{U+X}\right)=\frac{M}{U+X}$, since $\frac{M}{U+X}=\frac{V+(U+K)+X}{U+X}=\frac{V+(U+X)}{(U+X)} \cong \frac{V}{V \cap(U+X)}=\frac{V}{X+(U n V)}$ by(Second isomorphism and modular law). Since $\mathrm{J}\left(\frac{\mathrm{V}}{\mathrm{x}}\right)=\frac{\mathrm{V}}{\mathrm{x}}$, by Corollary (2.3), we get $\mathrm{J}\left(\frac{\mathrm{V}}{\mathrm{X}+(\mathrm{UnV})}\right.$) $=\frac{V}{X+(U n V)}$, hence $\mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{U}+\mathrm{X}}\right)=\frac{\mathrm{M}}{\mathrm{U}+\mathrm{X}}$, since $\mathrm{K}<_{\mathrm{J}} \mathrm{M}$ then $\mathrm{M}=\mathrm{U}+\mathrm{X}$, but $\mathrm{M}=\mathrm{U}+\mathrm{V}$, and $\mathrm{X} \subseteq \mathrm{V}$ and $\mathrm{J}\left(\frac{\mathrm{V}}{\mathrm{x}}\right)=\frac{\mathrm{V}}{\mathrm{x}}$, then $\mathrm{V}=\mathrm{X}$, by Remark (3.2).
Proposition (3.11): Let M be any R -module and let V be J -supplement of W in M and $\mathrm{K} \subseteq \mathrm{V}$ then $K \ll_{J} M$ if and only if $K \ll_{J} V$.
Proof: \Rightarrow Let $K+X=V$ with $J\left(\frac{V}{x}\right)=\frac{V}{X}$ to prove $V=X$, but $V+W=M$ and $V \cap W \ll_{J} V$, then $M=(K+X)+W$ hence $M=K+(X+W)$ to prove $J\left(\frac{M}{X+W}\right)=\frac{M}{X+W}$, since $\frac{M}{X+W}=\frac{V+(X+W)}{(X+W)} \cong$ $\frac{\mathrm{V}}{\mathrm{V} \cap(\mathrm{X}+\mathrm{W})}=\frac{\mathrm{V}}{\mathrm{X}+(\mathrm{V} \cap \mathrm{W})}$ by (Second isomorphism and modular law). Since $\mathrm{J}\left(\frac{\mathrm{V}}{\mathrm{X}}\right)=\frac{\mathrm{V}}{\mathrm{X}}$ by Corollary (2.3), we get $J\left(\frac{V}{X+(V \cap W)}\right)=\frac{V}{X+(V \cap W)}$, hence $J\left(\frac{M}{X+W}\right)=\frac{M}{X+W}$, since $K \ll_{J} M$ then $M=X+W$, but $\mathrm{M}=\mathrm{V}+\mathrm{W}$ and $\mathrm{X} \subseteq \mathrm{V}$ and $\mathrm{J}\left(\frac{\mathrm{V}}{\mathrm{x}}\right)=\frac{\mathrm{V}}{\mathrm{x}}$, then by Remark (3.2), $\mathrm{V}=\mathrm{X}$
\Longleftarrow Clearly by Proposition (2.6.(4)).
Proposition (3.12) : Let M by any R -module and let V be a J -supplement of U in M, K and T be submodules of V . Then T is J -supplement of K in V if and only if T is J -supplement of $\mathrm{U}+\mathrm{K}$ in M .
Proof: \Rightarrow Let T is J-supplement of K in V , then $\mathrm{V}=\mathrm{T}+\mathrm{K}$ and $\mathrm{T} \cap \mathrm{K}<_{\mathrm{J}} \mathrm{V}$, Let $(\mathrm{U}+\mathrm{K})+\mathrm{L}=\mathrm{M}$ for $\mathrm{L} \subseteq \mathrm{T}$ with $\mathrm{J}\left(\frac{\mathrm{T}}{\mathrm{L}}\right)=\frac{\mathrm{T}}{\mathrm{L}}$, to prove $\mathrm{T}=\mathrm{L}$. Now $\mathrm{K}+\mathrm{L} \subseteq \mathrm{V}$. Since $\frac{\mathrm{V}}{\mathrm{K}+\mathrm{L}}=\frac{\mathrm{T}+(\mathrm{K}+\mathrm{L})}{\mathrm{K}+\mathrm{L}} \cong \frac{\mathrm{T}}{\mathrm{T} \cap(\mathrm{K}+\mathrm{L})}=$ $\frac{\mathrm{T}}{\mathrm{L}+(\mathrm{K} \cap \mathrm{T})}$ by (Second isomorphism and modular law), and $\mathrm{J}\left(\frac{\mathrm{T}}{\mathrm{L}}\right)=\frac{\mathrm{T}}{\mathrm{L}}$ by Corollary (2.3), we get $\mathrm{J}\left(\frac{\mathrm{T}}{\mathrm{L}+(\mathrm{K} \cap \mathrm{T})}\right)=\frac{\mathrm{T}}{\mathrm{L}+(\mathrm{K} \cap \mathrm{T})}$, hence $\mathrm{J}\left(\frac{\mathrm{V}}{\mathrm{K}+\mathrm{L}}\right)=\frac{\mathrm{V}}{\mathrm{K}+\mathrm{L}}$ and because V is J -supplement of U in M then $\mathrm{M}=\mathrm{U}+\mathrm{V}$ and by Remark (3.2) $\mathrm{K}+\mathrm{L}=\mathrm{V}$, since $\mathrm{L} \subseteq \mathrm{T}$ and T is J -supplement of K in V and by Remark (3.2) $\mathrm{T}=\mathrm{L}$.
\Longleftarrow Let T is J -supplement of $\mathrm{U}+\mathrm{K}$ in M . Then $\mathrm{T}+(\mathrm{U}+\mathrm{K})=\mathrm{M}$ and $\mathrm{T} \cap(\mathrm{U}+\mathrm{K})<_{\mathrm{J}} \mathrm{T}$. Let $\mathrm{T}+\mathrm{K}=$ V to prove $\mathrm{T} \cap \mathrm{K}<_{\mathrm{J}} \mathrm{T}$ since $\mathrm{T} \cap \mathrm{K} \subseteq \mathrm{T} \cap(\mathrm{U}+\mathrm{K})<_{\mathrm{J}} \mathrm{T}$, then by Proposition (2.6.(1)), $\mathrm{T} \cap \mathrm{K}<_{\mathrm{J}} \mathrm{T}$, hence T is J -supplement of K in V .
Let U, V be a submodule of a module M , we will say that U and V are mutual J -supplements, if U is J -supplement of V in M and V is J -supplement of U in M .
Corollary (3.13) : Let M by any R -module and let U and V be mutual J -supplements in M . L be J-supplement of S in U and T be J-supplement of K in V then $L+T$ is J-supplement of $K+S$ in M. Proof: Since $U=S+L$ and V is J-supplement of U in M, then by Proposition(3.12) T is J-supplement of $S+L+K$ in M and then $(S+L+K) \cap T \ll_{J} T$, since $V=K+L$ and U is J-supplement of V in M, then by Proposition (3.12), L is J-supplement of $\mathrm{S}+\mathrm{K}+\mathrm{T}$ in M and then $(S+K+T) \cap L<_{J} L$, because $U=S+L, V=K+T$, and $M=U+V$, then we have $M=S+L+K$ $+\mathrm{T}=\mathrm{S}+\mathrm{K}+\mathrm{L}+\mathrm{T}$, then by Proposition (2.6.(2)) , $(\mathrm{S}+\mathrm{K}) \cap(\mathrm{L}+\mathrm{T}) \subseteq \mathrm{L} \cap(\mathrm{S}+\mathrm{K}+\mathrm{T})+\mathrm{T} \cap(\mathrm{S}+$ $\mathrm{K}+\mathrm{L}) \ll_{\mathrm{J}} \mathrm{L}+\mathrm{T}$, hence $\mathrm{L}+\mathrm{T}$ is J -supplement of $\mathrm{K}+\mathrm{S}$ in M .
Definition (3.14): Let L and N be a submodules of any R-module M. L is called weak J-supplement of N in M. If $N+L=M$, and $N \cap L \ll_{J} M$, A module M is called weakly J-supplemented if every submodule of M has a weak J -supplement in M .
Remarks (3.15) : It is clear that every J-supplemented is weakly J-supplemented . But the converse in general is not true. See the following example. \mathbb{Q} as \mathbb{Z}-module is weakly J-supplemented but not J-supplemented .
Proposition (3.16): Let $\mathrm{M}_{1}, \mathrm{~K} \subseteq \mathrm{M}$, and let M_{1} be a weakly J -supplemented module. If $\mathrm{M}_{1}+\mathrm{K}$ has a weakly J -supplement in M then so does K .
Proof : By assumption there exists $N \subseteq M$, such that $N+\left(M_{1}+K\right)=M$, and $N \cap\left(M_{1}+K\right) \ll_{J} M$, since M_{1} is weakly J -supplemented module there exists $\mathrm{L} \subseteq \mathrm{M}_{1}$ such that $(\mathrm{N}+\mathrm{K}) \cap \mathrm{M}_{1}+\mathrm{L}=\mathrm{M}_{1}$ and $(\mathrm{N}+\mathrm{K}) \cap \mathrm{L} \ll_{\mathrm{J}} \mathrm{M}_{1}$ thus $\mathrm{K}+\mathrm{N}+\mathrm{L}=\mathrm{M}$, and $(\mathrm{N}+\mathrm{K}) \cap \mathrm{L} \ll_{\mathrm{J}} \mathrm{M}_{1}$, and by Proposition (2.6.(4)), $(N+K) \cap L \lll_{J} M$ that is L is a weakly J-supplement of $N+K$ in M, we will show that $N+L$ is a weakly J-supplement of K in M, it is clear that $(N+L)+K=M$, so it enough to show that $(N+L) \cap K \ll_{J} M$. Since $(N+L) \cap K \subseteq N \cap\left(M_{1}+K\right)+(N+K) \cap L \ll_{J} M$, then $(N+L) \cap K \lll_{J} M$. Therefor $\mathrm{N}+\mathrm{L}$ is a weakly J -supplement of K in M .
Proposition (3.17) : Let $M=M_{1}+M_{2}$ if M_{1} and M_{2} are a weakly J-supplemented then M is a weakly J-supplemented.
Proof:Let N be a submodule of M. Since $M_{1}+M_{2}+N=M$, trivially has weakly J-supplement in M. And by Proposition (3.16), $\mathrm{M}_{2}+\mathrm{N}$ has a weakly J -supplement in M . And by Proposition (3.16), again thus N has a weakly J -supplement in M . So M is a weakly J -supplemented in M .
Proposition (3.18) : Let M be a weakly J -supplemented module and $\mathrm{X} \subseteq \mathrm{N} \subseteq \mathrm{M}$ if $\mathrm{X}<_{J} \mathrm{M}$ implies that $\mathrm{X} \ll_{\mathrm{J}} \mathrm{N}$, then N is a J -supplement submodule of M .
Proof: Suppose that M is a weakly J-supplemented. So $M=N+L, L \subseteq M$ and $N \cap L \ll_{J} M$. By our assumption we get $\mathrm{N} \cap \mathrm{L} \ll_{J} \mathrm{~N}$. Hence N is a J -supplement of L in M .
Proposition (3.19) : Let M be a weakly J -supplemented R -module then for every $\mathrm{U}, \mathrm{V} \subseteq \mathrm{M}$ with $\mathrm{M}=\mathrm{U}+\mathrm{V}$, there exists a weak J -supplement K of U in M with $\mathrm{K} \subseteq \mathrm{V}$.
Proof : Assume $\mathrm{U}, \mathrm{V} \subseteq \mathrm{M}$ with $\mathrm{M}=\mathrm{U}+\mathrm{V}$. Since M is weakly J -supplemented, $\mathrm{U} \cap \mathrm{V}$ has a weak J-supplement T in M. In this case $M=U \cap V+T$ and $(U \cap V) \cap T<_{J} M$. Since $M=U+V=(U \cap V)+$ T (by modular law), $\mathrm{M}=\mathrm{U}+(\mathrm{V} \cap \mathrm{T})$. Let $\mathrm{K}=\mathrm{V} \cap \mathrm{T}$. Then $\mathrm{M}=\mathrm{U}+\mathrm{K}$ and $\mathrm{U} \cap \mathrm{K}=\mathrm{U} \cap \mathrm{V} \cap \mathrm{T}<_{\mathrm{J}} \mathrm{M}$. Hence K is a weak J-supplement of U in M with $K \subseteq V$.
Proposition (3.20) : Let M be an R -module and V is a weak J -supplement of U in M for $\mathrm{L} \subseteq \mathrm{U}$ then $\frac{\mathrm{V}+\mathrm{L}}{\mathrm{L}}$ is a weak J-supplement of $\frac{\mathrm{U}}{\mathrm{L}}$ in $\frac{\mathrm{M}}{\mathrm{L}}$.
Proof: Since V is a weak J-supplement of U in M, Then $M=U+V$ and $U \cap V<_{J} M$ for $L \subseteq U$ we have $\mathrm{U} \cap(\mathrm{V}+\mathrm{L})=(\mathrm{U} \cap \mathrm{V})+\mathrm{L}$ (by modular law), and $\frac{\mathrm{U}}{\mathrm{L}} \cap\left(\frac{\mathrm{V}+\mathrm{L}}{\mathrm{L}}\right)=\frac{(\mathrm{U} \cap \mathrm{V})+\mathrm{L}}{\mathrm{L}}$, since $\mathrm{U} \cap \mathrm{V}<_{\mathrm{J}} \mathrm{M}$, it follows $\frac{(\mathrm{U} \cap \mathrm{V})+\mathrm{L}}{\mathrm{L}} \ll_{\mathrm{J}} \frac{\mathrm{M}}{\mathrm{L}}$, since $\frac{\mathrm{M}}{\mathrm{L}}=\frac{\mathrm{U}+\mathrm{V}}{\mathrm{L}}=\frac{\mathrm{U}}{\mathrm{L}}+\frac{\mathrm{V}+\mathrm{L}}{\mathrm{L}}$ and $\frac{\mathrm{U}}{\mathrm{L}} \cap\left(\frac{\mathrm{V}+\mathrm{L}}{\mathrm{L}}\right)=\frac{(\mathrm{U} \cap \mathrm{V})+\mathrm{L}}{\mathrm{L}} \ll_{\mathrm{J}} \frac{\mathrm{M}}{\mathrm{L}}$. Therefor $\frac{V+L}{L}$ is a weak J-supplement of $\frac{U}{L}$ in $\frac{M}{L}$.

References

1. Inoue, T. 1983. Sum of hollow modules, Osaka J. Math , : 331-336
2. Keskin, D. 2000. On Lifting Modules, Comm. Algebra: 3427-3440.
3. Wisbauer , R. 1991 . Foundations of Module and Ring Theory, Gordon and Breach , Philadelphia
4. Kasch, F. 1982. Modules and Rings, Academic press,London.

[^0]: *Email: alikuban5@gmail.com

